
Introduction to Robot
Simulation (Gazebo)

Mayank Mittal

AE640A: Autonomous Navigation

January 10, 2018

AE640A: Lecture 2: System Integration Using ROS Framework Mayank Mittal

Outline
● Recap

○ ROS Communication Layer
○ ROS Ecosystem
○ Libraries/Tools in ROS

● Robot Simulation
○ Why we need it?

● Elements within Simulation
○ Collision and Visual Geometries
○ Joints
○ Sensors
○ Lights

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Loads of examples to come!

https://docs.google.com/presentation/d/1UaY98AB-6hVuQb7gerWV_8DA3I-lBbqog6vdMiGkeCA/edit?usp=sharing

What is ROS?
● A “meta” operating system for robots
● A collection of packaging, software

building tools
● An architecture for distributed

interprocess/ inter-machine
communication and configuration

● Development tools for system runtime
and data analysis

● A language-independent architecture
(c++, python, lisp, java, and more)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

What is ROS not?

● An actual operating system
● A programming language
● A programming environment / IDE
● A hard real-time architecture

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

●
○
○
○

●
○

●
○

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU MunichSlide Credit: Lorenz Mösenlechner, TU Munich

●
○
○

●
○

●
○

●
○

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

ROS Communication Protocols: Connecting Nodes
● ROS Topics

○ Asynchronous “stream-like” communication
○ Strongly-typed (ROS .msg spec)
○ Can have one or more publishers
○ Can have one or more subscribers

● ROS Services
○ Synchronous “function-call-like” communication
○ Strongly-typed (ROS .srv spec)
○ Can have only one server
○ Can have one or more clients

● Actions
○ Built on top of topics
○ Long running processes
○ Cancellation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

How to organize code in a ROS ecosystem?
ROS code is grouped at two different levels:

● Packages:
○ A named collection of software that is built and treated as an atomic dependency in the ROS

build system.
● Stacks:

○ A named collection of packages for distribution.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Lorenz Mösenlechner, TU Munich

How to organize code in a ROS ecosystem?

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

“package” “stack”

ROS Launch

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● launch is a tool for launching multiple
nodes (as well as setting parameters)

● Are written in XML as *.launch files
● If not yet running, launch automatically

starts a roscore

Slide Credit: Marco Hutter, ETH Zurich

$ roslaunch package_name file_name.launch

Start a launch file from a package with

More info:
http://wiki.ros.org/roslaunch

$ rosparam list

ROS Parameter Server

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Nodes use the parameter server to
store and retrieve parameters at
runtime

● Best used for static data such as
configuration parameters

● Parameters can be defined in launch
files or separate YAML files

List all parameters with

More info:
http://wiki.ros.org/rosparam

ROS GUI Tools

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

More info:
http://wiki.ros.org/rqt(demo in today’s class)

ROS Time
● Normally, ROS uses the PC’s system

clock as time source (wall time)
● For simulations or playback of logged

data, it is convenient to work with a
simulated time (pause, slow-down
etc.)

● To work with a simulated clock:
○ Set the /use_sim_time parameter

○ Publish the time on the topic /clock from
■ Gazebo (enabled by default)
■ ROS bag (use option --clock)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosparam set use_sim_time true

● To take advantage of the simulated
time, you should always use the
ROS Time APIs:

○ ros::Time

○ ros::Duration

ros::Time begin = ros::Time::now();
double secs = begin.toSec();

ros::Duration duration(0.5); // 0.5s

ROS Bags
● A bag is a format for storing

message data
● Binary format with file extension *.bag
● Suited for logging and recording

datasets for later visualization and
analysis

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Slide Credit: Marco Hutter, ETH Zurich

More info:
http://wiki.ros.org/Clock

$ rosbag record --all

Record all topics in a bag

$ rosbag record topic_1 topic_2 topic_3

Record given topics

$ rosbag info bag_name.bag

Show information about a bag

$ rosbag play [options] bag_name.bag

--rate=factor Publish rate factor
--clock Publish the clock time (set

param use_sim_time to true)
--loop Loop playback

Record given topics

Libraries/Tools available with ROS

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Open Source Robotics Foundation

What are Point Clouds?
● “Cloud”/collection of n-D points (usually n=3)
● Used to represent 3D information about the world:

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

What are Point Clouds?
● besides XYZ data, each point can hold additional information like RGB colors,

intensity values, distances, segmentation results, etc.

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Image Courtesy: Bastian Steder, University of Freiburg

How are Point Clouds collected?

Laser scans
(high quality)

Stereo cameras
(passive & fast but dependent on texture)

Time of flight cameras
(fast but not as accurate/robust)

Simulation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

How are Point Clouds useful?
● Spatial information of the environment has many important applications

○ Navigation / Obstacle avoidance
○ Grasping
○ Object recognition

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

More info:
http://wiki.ros.org/pcl

Detection of cars in Point Cloud Grasping Objects on Table

Coordinate frames

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● robots consist of many links
● every link describes its own

coordinate system
● sensor measurements are local to

the corresponding link
● links change their position over

time

Specifying the Arrangement of Devices

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● All these devices are mounted on
a robot in an articulated way.

● Some devices are mounted on
other devices that can move.

● In order to use all the sensors/
actuators together we need to
describe this configuration.

○ For each “device” specify one or
more frames of interest

○ Describe how these frames are
located w.r.t each other

Slide Credit: Wolfram Burgard, University of Freiburg

Defining the Structure

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Each “Link” is a reference frame of a
sensor

● Each “joint” defines the transformation
that maps the child link in the parent
link.

● ROS does not handle closed
kinematic chains, thus only a “tree”
structure is allowed

● The root of the tree is usually some
convenient point on the mobile base
(or on its footprint)

Slide Credit: Wolfram Burgard, University of Freiburg

Robot Simulation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Simulators mimic the real world, to a
certain extent

○ Simulates robots, sensors, and objects in a
3-D dynamic environment

○ Generates realistic sensor feedback and
physical interactions between objects

● Why use them?
○ Save time and your sanity
○ Experimentation much less destructive
○ Use hardware you don’t have
○ Create really cool videos

Plugins
Sensors
Models
Worlds

Physics
ODE
Bullet

Actuators
Sensors
Embedded controllers

Tools
Rviz
CLT

Nodes
Controller
Planner

Communications
Topics
Services

HARDWARE

Simulation Architecture

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Client
(your program)

Player Gazebo

Stage

Real
Hardware

Cmd

Data

TCP/IP

TCP/IP

TCP/IP

SHM

Simulation Architecture

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Gazebo runs two processes:

● Server: Runs the physics loop and generates sensor data.
○ Executable: gzserver
○ Libraries: Physics, Sensors, Rendering, Transport

● Client: Provides user interaction and visualization of a simulation.
○ Executable: gzclient
○ Libraries: Transport, Rendering, GUI

$ gzserver
$ gzclient

Run Gazebo server and client
separately:

$ gazebo

Run Gazebo server and client
simultaneously:

Elements within Simulation

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● World
○ Collection of models, lights,plugins and

global properties
● Models

○ Collection of links, joints,sensors, and
plugins

● Links
○ Collection of collision and visual objects

● Collision Objects
○ Geometry that defines a colliding surface

● Visual Objects
○ Geometry that defines visual

representation
● Joints

○ Constraints between links
● Sensors

○ Collect, process, and output data
● Plugins

○ Code attached to a World, Model,
Sensor, or the simulator itself

Element Hierarchy

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

World

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● A world is composed of a model
hierarchy

● The Gazebo server (gzserver)
reads the world file to generate
and populate a world

○ This file is formatted using SDF
(Simulation Description format) or
URDF (Unified Robot Description
Format)

○ Has a “.world” extension
○ Contains all the elements in a

simulation, including robots, lights,
sensors, and static objects

Willow Garage World

Models

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Each model contains a few key
properties:

○ Physical presence (optional):
■ Body: sphere, box, composite

shapes
■ Kinematics: joints, velocities
■ Dynamics: mass, friction, forces
■ Appearance: color, texture

○ Interface (optional):
■ Control and feedback interface

(libgazebo)

Element Types

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Collision and Visual Geometries
○ Simple shapes: sphere, cylinder, box,

plane
○ Complex shapes: heightmaps, meshes

Element Types

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Collision and Visual Geometries
○ Simple shapes: sphere, cylinder, box,

plane
○ Complex shapes: heightmaps, meshes

● Joints
○ Prismatic: 1 DOF translational
○ Revolute: 1 DOF rotational
○ Revolute2: Two revolute joints in series
○ Ball: 3 DOF rotational
○ Universal: 2 DOF rotational
○ Screw: 1 DOF translational, 1 DOF

rotational

Element Types

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Sensors
○ Ray: produces range data
○ Camera (2D and 3D): produces image

and/or depth data
○ Contact: produces collision data
○ RFID: detects RFID tags

● Lights
○ Point: omni-directional light source, a

light bulb
○ Spot: directional cone light, a spot light
○ Directional: parallel directional light, sun

LiDAR sensor in Gazebo

How to use Gazebo to simulate your robot?

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

Steps:

1. load a world
2. load the description of the robot
3. spawn the robot in the world
4. publish joints states
5. publish robot states
6. run rviz

Meet Robot “Alpha”

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Two-wheeled differential drive
robot

● Sensors:
○ Rotary Encoders
○ IMU
○ Camera
○ Kinect 360
○ Hokuyo URG-04

● Actuator
○ Brushed DC Motor

Meet Robot “Alpha”

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● How to design and create your own robot?

Motor Driver Micro-controller Voltage Regulator SwitchIMU

Real-Time Appearance-Based (RTAB) Mapping

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

●

●

More info:
http://wiki.ros.org/rtabmap

Rao-Blackwellized Particle Filter SLAM (GMapping)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● Uses a particle filter in which each
particle carries an individual map of
the environment

● Optimized for long-range laser
scanners like SICK LMS or PLS
scanner

More info:
https://www.openslam.org/gmapping.html

Meet Robot “Alpha”

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

● All source code available online, feel free to test them out and contribute!

https://github.com/Mayankm96/Phase-VII

Homework
● Install Ubuntu 16.04 and ROS Kinetic on laptop

○ Software setup scripts here

● Checkout ROS Wiki and Tutorials
○ Wiki (http://wiki.ros.org/)
○ Tutorials (http://wiki.ros.org/ROS/Tutorials)
○ Available Packages (http://www.ros.org/browse/list.php)

● Go through the lecture videos on ‘Programming for Robotics’ by ETH Zurich
(optional)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

http://releases.ubuntu.com/16.04/
http://wiki.ros.org/kinetic
https://github.com/Mayankm96/setup-ubuntu
http://wiki.ros.org/
http://wiki.ros.org/ROS/Tutorials
http://www.ros.org/browse/list.php
http://www.rsl.ethz.ch/education-students/lectures/ros.html

References
● Gazebo Website (http://gazebosim.org/)
● Koenig, N & Howard, A. “Design and use paradigms for Gazebo, an

open-source multi-robot simulator” (2004). IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2149 - 2154 vol.3.
10.1109/IROS.2004.1389727.

● M. Labbé and F. Michaud, “Long-term online multi-session graph-based
SPLAM with memory management,” in Autonomous Robots, accepted, 2017.
(Springer)

AE640A: Week 1: System Integration Using ROS Framework Mayank Mittal

https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/8/87/LabbeAURO2017.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/8/87/LabbeAURO2017.pdf
http://dx.doi.org/10.1007/s10514-017-9682-5

