Maximum-a-Posteriori (MAP)
Policy Optimization

Mayank Mittal

MAP Policy Optimization

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas
Heess, Martin Riedmiller (2018)

V-MPO: On-Policy MAP Policy Optimization For
Discrete and Continuous Control

H. Francis Song* , Abbas Abdolmaleki* , Jost Tobias Springenberg, Aidan Clark,
Hubert Soyer, Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala,
Nicolas Heess, Dan Belov, Martin Riedmiller, Matthew M. Botvinick (2019)

Duality: Control and Estimation

= What are the actions which maximize
future rewards?

|

« Assuming future success in maximizing
rewards, what are the actions most
likely to have been taken?

Solved using Expectation Maximization (EM)

Expectation Maximization

= Consider a latent variable model:

_ Problem-specific D;gzngfsxon B || /7”7
(discrete or cqrnmuous) (e.g., Gaussian) glOba/
. arameters
) p(x|z,8) p
)—@® | ©=100,9)
" Latent 7 N

= Generally, point estimation via MLE/MAP
is not possible due to intractability

OmLe = arg max log p(X|©) = arg max log ; p(X,Z|O)

Slide from course: Topics in Probabilistic Modeling and Inferences, Piyush Rai (Fall Semester, 2019), IIT Kanpur

Expectation Maximization

o Define p, = p(Z|X,©) and let q(Z) be some distribution over Z

o Assume discrete Z, the identity below holds for any choice of the distribution q(Z)

log p(X[©) = L(q,©) + KL(ql[pz)

l\'I.((/Hp)

- _ [p(x.zie)
KL(qllp:) = —_ a(Z)log { p(qu();)e) } L(q,0) Inp(X|0)
Z

o Since KL(q||p;) > 0, £(q,©) is a lower-bound on log p(X|©)

log p(X|©) > L(q,©) \
ELBO

o Maximizing £(q,©) will also improve log p(X|©)

Slide from course: Topics in Probabilistic Modeling and Inferences, Piyush Rai (Fall Semester, 2019), IIT Kanpur

Expectation Maximization

o Note that £(q,©) depends on two things g(Z) and ©. Let's do ALT-OPT for these
o First recall the identity we had: log p(X|®) = £L(g,©) + KL(q||p;) with

X, 2|0 Z|X,©
0= e { Al o) } and KL(qllp:) = — 3 q(2) log { B =) }

z z

o Maximize £ w.r.t. g with © fixed at ©°“: Since log p(X|©) will be a constant in this case,
§ = argmax £(q, ©°7) = argminKL(q||p;) = p, = p(Z|X, ©°7)
q q

o Maximize £ w.r.t. © with q fixed at § = p(Z|X, ©°)

P(X,Z|©)

new 1 g
O™ = argmax £(3,0) = argmax 3 _ p(Z|X, %) log ~mr—C5s

S, old
a = arg max Z p(Z|X,©"")log p(X, Z|©)

4

. therefore, | ©"*" = arg max Q(©,0°7) | where Q(©,0°) = E z)x gou)[log p(X, Z|O)]

0

o Q(6,0%) = E,zix,00¢)[log p(X, Z|©)] is known as expected complete data log-likelihood (CLL)

Slide from course: Topics in Probabilistic Modeling and Inferences, Piyush Rai (Fall Semester, 2019), IIT Kanpur

Expectation Maximization

o Step 1: We set § = p(Z|X,©°“), L(§, ©) touches log p(X|©) at ©°
o Step 2: We maximize £(§,©) w.r.t. © (equivalent to maximizing Q(©, ©°))

e OMLE

Slide from course: Topics in Probabilistic Modeling and Inferences, Piyush Rai (Fall Semester, 2019), IIT Kanpur

Expectation Maximization

Initialize the parameters: ©°“. Then alternate between these steps:
o E (Expectation) step:
o Compute the posterior distribution p(Z|X,©°“) over latent variables Z using ©°

o Compute the expected complete data log-likelihood w.r.t. this posterior distribution

N
Q(es GOId) -]Ep(le.Go’d) [lOg p(x' Z|e)] - Z lEp(z,,lx,,.e"’d) [lOg p(x"’ 2,,|9)]

n=1
N
— ZIEp(znlxn.Go’d)[log p(x,,lz,,.e) + Iogp(znle)]
n=1

o M (Maximization) step:
o Maximize the expected complete data log-likelihood w.r.t. ©

" = argmaxQ(®, %)

o If the incomplete log-lik p(X|©) not yet converged then set ©°¢ = ©"** and go to the E step.

Slide from course: Topics in Probabilistic Modeling and Inferences, Piyush Rai (Fall Semester, 2019), IIT Kanpur

Duality: Control and Estimation

= What are the actions which maximize
future rewards?

|

« Assuming future success in maximizing
rewards, what are the actions most
likely to have been taken?

Solved using Expectation Maximization (EM)

MAP Policy Optimization

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas
Heess, Martin Riedmiller (2018)

Inference for Optimal Control

= Given a prior distribution over
trajectories

pr(1) = p(s0) | | p(st41lst, ar)m(ar|st)
£50

= Estimate the posterior distribution over
trajectories consistent with desired
outcome, O (such as achieving a goal)

P (7|0 ¢: 1) X pr(7)pr (O = 1|7)

interpreted as event of
succeeding at RL task

Inference for Optimal Control

Likelihood Function: p(O — 1‘7—) X exp (Zt Tt)

(for undiscounted case) T 8%

T

interpreted as event of temperature
succeeding at RL task

Likelihood Objective:

B8

7 = argmax, logp,(O =1)

= argmax, log/pW(T)p(O = 1|7)dr

T

Inference for Optimal Control

Likelihood Objective: 71 — argmax,]Qng(O — 1)
A
—
logpr (0 =1) = log/pw(f)pw(O = 1|7)dr
= tog [4= 250 = 1}r)ar

q(T) < Auxiliary
E-step: oo E [Pr(T) 0=1 } Distribution
Improves ELBO 0gErng | % PO = 11T
w.r.t.

7 31— logp(= 1|7') g [log pﬂ((:))]
M-step:) :)
Improves ELBO > E;nql| logp(O =1|1)| — KL(q(7)||px (7))
w.r.t. policy ~ s = .

J(q,m)
> Jgy7) \

Inference for Optimal Control

r
Likelihood Function: p(O — 1‘7-) X eXp Zt t
(for undiscounted case) T o

T

interpreted as event of temperature
succeeding at RL task

Likelihood Objective:
7" = argmax, logp,(O =1)
= argmax, J(q,)
= argmax; Er~ | logp(O = 1|7)| — KL(g(7)||px (7))
:Zt Tt

(8

= argmax, E,~q

| = KL((7)lpx (7))

Inference for Optimal Control

Definition of
variational —> q(7) = p(s0) | [P(st41lst, ar)q(ac|s:)
distribution t>0

Likelihood Objective:

For undiscounted case:

T(a:7) = Erng| D 71| = aKL(g()][pr(7))
t
For discounted case:
J(q,0) = Ervq ivt [Tt — aKL((q(at|st)||m(ar|st, 9))] + log p(6)
toE r

policy discount prior
parameters factor

Regularized RL

Likelihood Objective:

For discounted case:

T(0,0) = Erng| > 4" |re — aKL((a(at]se)| 7 (at]s:. 8))| | +log p(6)
t=0 \ J

q(alz)
m(alz)

m-regularized reward ——> r%(z,a) = r(z,a) — alog
for policy ¢

Regularized Q-value function:

Qg(sv a’) =179+ Eq('r),s():s,a():a |:Z 7t [rt = aKL(Qt|7rt)]:|

t>1

Regularized RL

m-regularized reward ——> r’%(z,a) = r(z,a) — alog

for policy q

Bellman operators: Define the m-regularized Bellman operator for policy g

T2V (5) = Bang(i) [r2?(@,0) + TEymp iV (3)],

and the non-regularized Bellman operator for policy ¢
TV (2) = Eqng(|2) [T(fv, a) + 71Ey~p(-|a:,a>V(y)] :

Value function: Define the 7m-regularized value function for policy g as

Voi(z) = [Z’)’t & (g, at)|xg =, Q]
t>0
and the non-regularized value function

Vi(z)=E, [Z'ytr(a:t, o) |Eo =2, q] :

t>0

=

q(a|z)
m(alz)

Proposition
Vma < Ve
TV < TV

Objective of MPO

= Uses EM-style coordinate ascent to
maximize estimation objective

>~ |re — oKL ((aarlsy) [(ar]s.0)) |
t=0

J(q,0) = Eryq + log p(0)

= Proposes off-policy algorithm that is
= scalable, robust and insensitive to
hyperpa rameters < on-policy algorithms
= offers data-efficiency < off-policy algorithms

Regularized RL

Likelihood Objective:

For discounted case:

T(0,0) = Erng| > 4" |re — aKL((a(at]se)| 7 (at]s:. 8))| | +log p(6)
t=0 \ J

q(alz)
m(alz)

m-regularized reward ——> r%(z,a) = r(z,a) — alog
for policy ¢

Regularized Q-value function:

Qg(sv a’) =179+ Eq('r),s():s,a():a |:Z 7t [rt = aKL(Qt|7rt)]:|

t>1

E-step: Maximization w.r.t. g

Consider iteration i:
1. Set g = mg,

2. Estimate unreqgularized action value:

o0 .
q g Using
QO,L- (37 CL) — QOZ' (37 CL) — ETwi,s():s,aO:a Z S <— Retrace
¢ Algorithm
11}}11 L(¢) = 11}1}11 B st {((2(;/ (S¢,as, @) — (2'}“)1 Off-policy!

Munos, Remi, et al. ‘Safe and Efficient Off-Policy Reinforcement Learning’. Advances in Neural
Information Processing Systems, 2016, pp. 1054-1062. Neural Information Processing Systems,

E-step: Maximization w.r.t. g

Consider iteration i:
3. Maximize one-step objective:

max Js(q,0;) = maxT™9Qg. (s, a)
q q

== man E,u(s) [Eq(ls) [QOZ (37 CL)] = aKL(Q||7TZ):|

f

Stationary since samples constant w.r.t g
from replay buffer

INTERPRETATION:

Policy ¢ chooses soft-optimal action for one step
and then resorts to executing policy 7T

E-step: Maximization w.r.t. g

Consider iteration i:
3. Maximize one-step objective:

max Js(q,0;) = maxT™9Qg. (s, a)
q q

= man E,u,(s) [Eq(ls) [QQz (87 CL)] = O‘KL(QH’/Tl):I

arbitrary scale!

(Hard) Constrained E-step:

max [E,,) [Eq(als) [Qei (s, a)]]

q

S4B [KL(q(a|s),7r(a\s, Bz))] <€

E-step: Maximization w.r.t. g

Consider iteration i:

3. Maximize one-step objective:

(Hard) Constrained E-step:

max [E,) []Eq(alS) [Qgi (s, a)”

q

5.8 By [KL(q(a|s),7r(a|s, 92))] < €

Method 1

Use parametric variational
distribution

*

Similar to TRPO/PPO

Method 2

Use non-parametric
variational distribution

*

sample based distribution
over actions for a state

E-step: Maximization w.r.t. g

Consider iteration i:

3. Maximize one-step objective:
(Hard) Constrained E-step:

max [E,) []Eq(alS) [Qgi (s, a)”

q

5.8 By [KL(q(a|s),7r(a|s, 02))] < €

Method 2

(s, a _
gi(als) ox m(als, ;) exp (Qez(*)) Use non-parametric
U variational distribution

Lagrangiak * o
Formulation sample based distribution

over actions for a state

E-step: Maximization w.r.t. g

Consider iteration i:

1. Set ¢ = 7y,
2. Estimate unreqgularized action value:

o0 .
Qy.(s,a) = Qg,(s5,a) =E Z o P
g;\° &) — wo;\s,q) = Lz . s0=5,a0=0a T Retrace

¢ Algorithm

3. Maximize “one-step” KL regularized
objective to obtain:

Qi(a|8) X 7T(a|s, 97;) exp (Qei(s,a))

*

M-step: Maximization w.r.t @

Likelihood Objective:

For discounted case:

>4 [re = aKL((a(arlso)l[r(arlst, 0))
t=0

J(q,0) = Eryq + log p(0)

M-step: Partial Maximization w.r.t policy

mng(qi, 9) — meaX Euq(s) [Eq(als) [10g7r(a|s, 9)]] + lng(H)

!

Looks similar to
supervised learning!

M-step: Maximization w.r.t @

Likelihood Objective:

For discounted case:

J(q,0) = Eryg + log p(0)

> |re — oKL ((a(adlst) I (alst, 0))

t=0

M-step: Partial Maximization w.r.t policy

meaxj(Q’h 9) — meaX E,uq(s) [Eq(a|s) [10g7T(CL|S, 9)]] + lng(H)

T samples weighted by
variational distribution

Looks similar to from E-step

supervised learning!

M-step: Maximization w.r.t @

M-step: Partial Maximization w.r.t policy

max J(¢q;,0) = maxE, (s [Eq(a|s) [log m(als, 9)” + log p(0)

))
T —
—
Looks similar to " _p v _ Fe;
supervised learning! p(0) ~ N(u = 0,2 =3)

For generalized case:

max[E,) []Eq(a|s) {log m(als, 9)] = AKL(’/T(UJSa 0;), m(als, 9))]

M-step: Maximization w.r.t @

M-step: Partial Maximization w.r.t policy

For generalized case:

mEX]Euq(s) []Eq(a|s) [10g7r(a|s, 0)] &)‘KL(”T(UJ|37 0;), m(als, 9))]

(Hard) Constrained M-step:

max E,Uq(s) [Eq(a|s) [log 7T(a|8, 9)”

st. B, (s [KL(w(a|s, 9,),7(als, 0))] <e

prevents overfitting on the samples since the constraint
decreases tendency of the entropy of policy to collapse

Algorithm

Algorithm 2 MPO (worker) - Non parametric variational distribution
1: Input = ¢, €5, €, Linax
2: 1= bgm—10
3: Initialise Q. (a, s), 7(als, 0:), N, Yu, M=
4: for each worker do

5 while L, > L.« do
6: update replay buffer B with L trajectories from the environment
7 k=0
8: // Find better policy by gradient descent
9: while £ < 1000 do
10: sample a mini-batch B of N (s, a, r) pairs from replay
11: sample M additional actions for each state from B, 7(a|s, ;) for estimating integrals
12: compute gradients, estimating integrals using samples
13: /T Q-function gradient: !
14: 109 = 0o Liy(P) _ __ i _________]
k5 1 // E-Step gradient: I
16: I 6n = Oyg(n) '
I i |
17: ! Let: q(a|s) ox w(als,Bi)exp(QﬁL(—g-n’_i’—d)—)) !
18: . 7/ M-Step gradient: I
19: 1 [0n,0s s] = Oy, e L(Oks N 52) |
20: : dg = aGL(ev n#ki1v7]2k+l) 1
21: send gradients to chief worker™ =~~~ T 7 *
22: wait for gradient update by chief
23: fetch new parameters ¢, 0,1, 7,, s
24: k=k+1
25: =¥t L Lom=ten¥L
26: 91' = 6, (25’ = (b

Algorithm

Algorithm 3 MPO (worker) - parametric variational distribution

1: Input = €x, €4, Limax
2: 4=, Ligsz =4)
3: Initialise Q. (a, s), m(a|s,), n, N, Nx
4: for each worker do
5: while L.y < Lpax do
6: update replay buffer B with L trajectories from the environment
7: k=20
8: // Find better policy by gradient descent
9: while £ < 1000 do
10: sample a mini-batch B of N (s, a, r) pairs from replay
11: sample M additional actions for each state from B, 7(als, @).) for estimating inte-
grals
12 compute gradients, estimating integrals using samples
13: /' Q-function gradient: :
14: IOQ = _(9 L, i@ _______________ -
15: // E-Step gradlent I
16: '[‘577 ,Ons] = a0y, s L(Ok, s) :
17: ______ 0o = 0o L(6. Ny 1. N5pt) L o
18: 1 /I M-Step gradient: In practice there is no M-step in this case as policy and variatinal 1
distribution g use a same structure. _ __ ___ __ _____ ___________________ I
19: send gradients to chief worker
20: wait for gradient update by chief
2¥ fetch new parameters ¢, 0,7,1,,,7x
22: k=k+1
23: t=1+1, Ly = Leur + L

24 91=9¢,=Q§

Experimental Evaluation

= Gaussian parametrization of policy
= Benchmark on continuous control tasks

Figure 1: Control Suite domains used for benchmarking. 7op: Acrobot, Ball-in-cup, Cart-pole,
Cheetah, Finger, Fish, Hopper. Bottom: Humanoid, Manipulator, Pendulum, Point-mass, Reacher,
Swimmers (6 and 15 links), Walker.

Experimental Evaluation

= Stable learning on all tasks
= Significant sample efficiency

Figure 2: Ablation study of the MPO algorithm and comparison to common baselines from the liter-

ature on three domains from the control suite. We plot the median performance over 10 experiments
with different random seeds.

task_name=run, domain_name=walker task_name=stand, domain_name=hopper task_name=swingup, domain_name=acrobot

mean_return

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 .5 2.0 0.0 0.5 1.0 1.5 2.0
training_steps le6 training_steps le6 training_steps le6
—— agent=DDPG —— agent=MPO = (ag&ll'lrtr:;gjr retrace + entropy
agent=EPG + retrace + entropy —— agent=MPO (parametric)

(optimized) ——— agent=PPO

Experimental Evaluation

= Stable learning on all tasks
= Significant sample efficiency

Figure 3: MPO on high-dimensional control problems (Parkour Walker2D and Humanoid walking
from control suite).

Parkour Walker2D task_name=run, domain_name=humanoid
60 1000
50 800
£ =
240 2 600
q) —
=~ 30 2!
& S 400
o 20 4]
£ = 200
10
0 0
0 1 2 3 4 5 6 00 02 04 06 0.8 0l 3.2 1.4
ini le7
total steps le8 training_steps
—— agent=MPO — agent=ppo —— agent=DDPG —— agent=MPO
agent=EPG + retrace + entropy — agent=PPO
(optimized)

—— agent=MPO (parametric)

V-MPO: On-Policy MAP Policy Optimization For
Discrete and Continuous Control

H. Francis Song* , Abbas Abdolmaleki* , Jost Tobias Springenberg, Aidan Clark,
Hubert Soyer, Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala,
Nicolas Heess, Dan Belov, Martin Riedmiller, Matthew M. Botvinick (2019)

Objective of V-MPO

= Uses EM-style coordinate ascent to
maximize estimation objective

Lvmpo(0,n,a) = L(0) + Ly(n) + La(6, @)

= Proposes on-policy algorithm
= replaces state-action value function in
MPO with state value function
= scalable to multi-task setting without
population-based tuning of
hyperparameters

Objective of V-MPO

= Uses EM-style coordinate ascent to
maximize estimation objective

Lvmpo(0,n,a) = L(0) + Ly(n) + La(6, @)

= Proposes on-policy algorithm
= replaces state-action value function in
MPO with state value function
= scalable to multi-task setting without
population-based tuning of
hyperparameters

Inference for Optimal Control

= In MPO: >
t
p(O = 1|7) x exp :
T 0
interpreted as event of templrature
succeeding at RL task

= In V-MPO:.:

ATe
po(Z = 1|s,a) o exp ((s,a))
T n
interpreted as relative templrature

improvement in policy
over previous policy

Inference for Control

MAP Objective: 0" = argmax [IOgPG (L= 1)+ logp(ﬁ)]

I

—

Identity: log p(X) = Ey(z) [log 25572] + Do (4(2)[|p(Z] X))
=1

log (T = 1) = 3 t(s,0)log P20 =22+ D (1(5,0) (s, a7 = 1)

s,a

E-step:
Improves ELBO w.r.t.%)(s, a)

M-step:
Improves ELBO w.r.t. policy

E-step: Maximization w.r.t. g

Consider iteration i:
1. Set w(sv&) = P04 (S,(Z\I = 1)

2. Estimate value function V[(s) :

1 - n)\ 2 '
Ly (p) = 3D > (Vi(se) - &) — step
s¢~D targets

!

3. Calculate advantages: On-policy!

A™(sy,a0) = Gy — VI (s1)

E-step: Maximization w.r.t. g

Consider iteration i:
4. Maximize objective:

T ((s,a)) = D (¥(s, a)|[po, (s, al = 1))
X — Zw (s,a)A™u(s, a —I—nzw S, a log

—I—/\Zw S, a)

91d

(Hard) Constrained E-step:

Y (s,a) = arg max Zw (s,a)A™u (s, a)

Y(s,a)

s.t. Zysalog ¥(s,)<enand2u9a—l

Po |d(9 a’)

S.,a

E-step: Maximization w.r.t. g

Consider iteration i:

4. Maximize objective:
(Hard) Constrained E-step:

Y (s,a) = arg max Zw (s,a)A™u(s, a)

Y(s,a)

p9 ld() s.a
Method
Po,a (s, @) exp (A—5(4)
(s, a) = A (5.3) Use non-parametric

D s,0 Do (8, a) €xp (T) variational distribution

Lagrangi?”k sample based distribution

Formulation .
over actions for a state

E-step: Maximization w.r.t. g

Consider iteration i/:
4. Maximize objective:
(Hard) Constrained E-step:

Y(s,a) = argzir(lax Zw (s,a)A™u (s, a)

s.t. Zz/) s,a logpgk(,(s c)z,) < €, and Zz,b 5] =il

Engineering:

learning improves substantially if samples corresponding to
the highest 50% of the advantages in each batch are taken

M-step: Maximization w.r.t @

M-step: Partial Maximization w.r.t policy

Here, minimization (due to negative sign):

T Liis;
£6) == 3 v(s,0)log P2 — log ()
T Weig_jhted
Lr(0) =~ ;w(s, a)log my(als) ?kae):;:‘::,nc‘;

policy loss!
Assumption:

During sample-based computation of the loss, any state-action
pairs not in the batch of trajectories have zero weight

M-step: Maximization w.r.t @

M-step: Partial Maximization w.r.t policy

For generalized case (minimization, due to negative sign):

mein — Z Y(s,a)logmg(als) + A, [DKL (Weold(a’3)||ﬂo(a|8))}

(Hard) Constrained M-step:

0" = arg m@in — Z Y(s,a)logm(als)

s,a

st. E [DKL(Wgold(a|3)||7r9(a]s))]<ea

s~p(s)

prevents overfitting on the samples since the constraint
decreases tendency of the entropy of policy to collapse

Experimental Evaluation

(a) (b) - =
jectori MLP o
Trajectories
POLICY \ / VALUE
SHARED

LSTM | Prev.acton

or TrXL R

Target very ".-, steps pre rewar

it

Language LSTM
LEARNER / ReSNet\ (DMLab only)

N

Figure 5: (a) Actor-learner architecture with a target network, which is used to generate agent
experience in the environment and is updated every 7Ti,ee learning steps from the online network. (b)
Schematic of the agents, with the policy (#) and value (¢) networks sharing most of their parameters
through a shared input encoder and LSTM [or Transformer-XL (TrXL) for single Atari levels]. The
agent also receives the action and reward from the previous step as an input to the LSTM. For DMLab
an additional LSTM is used to process simple language instructions.

Experimental Evaluation

Multi-task Control: DMLab-30

o 100 160 - =7
N
© © 140
E a0 I
2 g 120
c
—
g 60 - CC) 100
3 T
< S 80
& S
o 40
£ 2 60
o
§ L 404
g 207 — V-MPO (24) B
o — IMPALA (38 PBT) = 204 / — V-MPO (24)
= " — R2D2+@(30 x 10B env. steps) 2 — IMPALA-PBT (24)
L) r T T T T 1 r T T T T T 1
0 2 4 6 8 10 0 2 4 6 8 10 12
Environment (4 xagent) steps (B) Environment (4 xagent) steps (B)
(a) Multi-task DMLab-30. (b) Multi-task Atari-57.

Figure 1: (a) Multi-task DMLab-30. IMPALA results show 3 runs of 8 agents each; within a run
hyperparameters were evolved via PBT. For V-MPO each line represents a set of hyperparameters
that are fixed throughout training. The final result of R2D2+ trained for 10B environment steps
on individual levels (Kapturowski ct al., 2019) is also shown for comparison (orangc linc). (b)
Multi-task Atari-57. In the IMPALA experiment, hyperparameters were evolved with PBT. For
V-MPO each of the 24 lines represents a set of hyperparameters that were fixed throughout training,
and all runs achieved a higher score than the best IMPALA run. Data for IMPALA (“Pixel-PopArt-
IMPALA” for DMLab-30 and “PopArt-IMPALA” for Atari-57) was obtained from the authors of
Hessel et al. (2018). Each environment frame corresponds to 4 agent steps due to the action repeat.

Experimental Evaluation

Discrete Control: Atari

1000 4 1000000 - 1000000 -

" L e— 350000 -
breakout Det. eval. star_gunner Det. eval seaquest /7 Det. eval ms_pacman Det. eval.
. P /'/ 300000 +
800 A A = 800000 e 800000 + / /
V/ / ; gl
) / v v/ 250000 N ‘:,»'b“\
5 600 - / 600000 + & 600000 + A 200000 4 9t
2 7 Y / f N
o //; H A/ j-‘/?\j‘\‘. .
° y £/ - BV Ay
Q400 4 / 400000 + V/ 400000 + W 150000 LT I
= 24 % G
a - Yy / 100000 - 7
2004 Jip 200000 + / 200000 + /}-'
I/ 4 50000
/4 — V-MPO-TrXL (10) — V-MPO-TrXL (10) — V-MPO-TrXL (10) V-MPO-TrXt {107
/“f R2D2@~308 R2D2@37.5B 4 R2D2@~10B / R2D2@37.58
o 0- 0- 04
0 2 a 6 8 10 0 2 a 6 8 10 0 2 a 6 8 10 0 10 20 30 40 S0 60 70 80

Environment (4 xagent) steps (B)

Figure 3: Example levels from Atari. In Breakout, V-MPO achieves the maximum score of 864
in every episode. No reward clipping was applied, and the maximum length of an episode was 30
minutes (108,000 frames). Supplementary video for Ms. Pacman: https://bit.1ly/21WQOBy5

Experimental Evaluation

Continuous Control

1000 4 800 10000 12000
Det, eval e = R g Det, eval . Det. eval
% = —— 700 4 56-dim humanoid-gaps e gl e 5
= Ay e 10000 = /, — AN
800 { 8000 & A P
o 600 f p ;
o At et T f o o == g S
5 i1 8 500 4 | 5 5 8000 A 7 e 26
$ 6004 /1 3 / Z 6000 - 2 f-({4
u It v {1/ k) @ P
& i 400) = - sy |
o | v # f P @ 6000 {—% 4
B a0 e 3 : ‘ 2 3 B v
A i/ 4300 4 Q 4000+ @ / Gym: Walker2d-v1
uQJ' / 22-dim humanoid-run uCJL) o Gym: Ant-v1 S_ 4000
/ / w
! — V-MPO (10} 200 / = V-MPO 10} —— V-MPO (10}
200 1t DDPG@40M 7 2000 4 , MPO@10M 2000 MPO@10M
'l';, — SVG@40M — PPO@3M — SAC@IM
I — MPO@40M —— SAC@3M PPO@1M
0- = T T T ¥ 1 An T T 0 cy T T T T T 0 r T T T T T -
0 2 4 6 8 10 0.0 05 1.0 15 2.0 0 1 2 3 a 5 6 0 1 2 3 a s 6
Environment steps (B) Environment steps (B) Environment steps (B) Environment steps (B)

(a) (b) (© (d)

Figure 4: (a) Humanoid “run” from full state (Tassa et al., 2018) and (b) humanoid “gaps” from
pixel observations (Merel et al., 2019). Purple curves are the same runs but without parametric
KL constraints. Det. eval.: deterministic evaluation. Supplementary video for humanoid gaps:
https://bit.ly/2L9KZdS. (c)-(d) Example OpenAl Gym tasks.

Summary

= Formulation of RL optimization
problem into an inference problem

= Two particular formulations:
= MPO: off-policy algorithm
= V-MPO: on-policy algorithm

MPO V-MPO

http://www.youtube.com/watch?v=he_BPw32PwU
https://docs.google.com/file/d/1Xf3ezwDFNapibDFNpe7ta6CsDcKODBLQ/preview

Thank you!

References

= Abdolmaleki, A., et al. (2018).
Maximum a Posteriori Policy
Optimisation. ArXiv, abs/1806.06920.

= Song, F., Abdolmaleki, A., et al.
(2019), V-MPO: On-Policy MAP Policy
Optimization for Discrete and

Continuous Control. ArXiv,
abs/1909.12238.

