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Duality: Control and Estimation

▪ What are the actions which maximize 
future rewards?

▪ Assuming future success in maximizing 
rewards, what are the actions most 
likely to have been taken?

Solved using Expectation Maximization (EM)



Expectation Maximization

“global” 
parameters

▪ Generally, point estimation via MLE/MAP 
is not possible due to intractability

▪ Consider a latent variable model:
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▪ Given a prior distribution over 
trajectories

▪ Estimate the posterior distribution over 
trajectories consistent with desired 
outcome, O (such as achieving a goal)

Inference for Optimal Control

interpreted as event of 
succeeding at RL task



Inference for Optimal Control

Likelihood Function:
(for undiscounted case)

interpreted as event of 
succeeding at RL task

temperature

Likelihood Objective:



Inference for Optimal Control
Likelihood Objective:

Auxiliary 
Distribution

ELBO

E-step:
Improves ELBO 
w.r.t. q 

M-step:
Improves ELBO 
w.r.t. policy
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Likelihood Function:
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Inference for Optimal Control

Definition of 
variational 
distribution

policy 
parameters

prior 

Likelihood Objective:

For undiscounted case:

For discounted case:

discount 
factor



Regularized RL
Likelihood Objective:

For discounted case:

Regularized Q-value function:



Regularized RL

Proposition



Objective of MPO

▪ Uses EM-style coordinate ascent to 
maximize estimation objective 

▪ Proposes off-policy algorithm that is
▪ scalable, robust and insensitive to 

hyperparameters
▪ offers data-efficiency

on-policy algorithms

off-policy algorithms



Regularized RL
Likelihood Objective:

For discounted case:

Regularized Q-value function:



E-step: Maximization w.r.t. q

Consider iteration i:
1. Set 

2. Estimate unregularized action value:
Using 
Retrace 
Algorithm

Off-policy!

Munos, Remi, et al. ‘Safe and Efficient Off-Policy Reinforcement Learning’. Advances in Neural 
Information Processing Systems, 2016, pp. 1054–1062. Neural Information Processing Systems,



E-step: Maximization w.r.t. q

Consider iteration i:
3. Maximize one-step objective:

constant w.r.t q

INTERPRETATION:

Policy    chooses soft-optimal action for one step 
and then resorts to executing policy 

Stationary since samples 
from replay buffer



E-step: Maximization w.r.t. q

Consider iteration i:
3. Maximize one-step objective:

(Hard) Constrained E-step: 
arbitrary scale!



E-step: Maximization w.r.t. q

Consider iteration i:
3. Maximize one-step objective:

(Hard) Constrained E-step: 

Method 1

Use parametric variational 
distribution

Method 2

Use non-parametric 
variational distribution

Similar to TRPO/PPO sample based distribution 
over actions for a state



E-step: Maximization w.r.t. q

Consider iteration i:
3. Maximize one-step objective:

(Hard) Constrained E-step: 

sample based distribution 
over actions for a state

Method 2

Use non-parametric 
variational distribution

Lagrangian 
Formulation 



E-step: Maximization w.r.t. q

Consider iteration i:
1. Set 
2. Estimate unregularized action value:

3. Maximize “one-step” KL regularized 
objective to obtain:

Using 
Retrace 
Algorithm



M-step: Maximization w.r.t
Likelihood Objective:

For discounted case:

M-step: Partial Maximization w.r.t policy

Looks similar to 
supervised learning!



M-step: Maximization w.r.t
Likelihood Objective:

For discounted case:

M-step: Partial Maximization w.r.t policy

 samples weighted by 
variational distribution 

from E-stepLooks similar to 
supervised learning!



M-step: Maximization w.r.t

M-step: Partial Maximization w.r.t policy

Looks similar to 
supervised learning!

For generalized case:



M-step: Maximization w.r.t

M-step: Partial Maximization w.r.t policy

For generalized case:

(Hard) Constrained M-step: 

prevents overfitting on the samples since the constraint 
decreases tendency of the entropy of policy to collapse



Algorithm



Algorithm



Experimental Evaluation

▪ Gaussian parametrization of policy
▪ Benchmark on continuous control tasks
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Objective of V-MPO

▪ Uses EM-style coordinate ascent to 
maximize estimation objective 

▪ Proposes on-policy algorithm
▪ replaces state-action value function in 

MPO with state value function
▪ scalable to multi-task setting without 

population-based tuning of 
hyperparameters
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▪ In MPO:

▪ In V-MPO:

Inference for Optimal Control

interpreted as event of 
succeeding at RL task

temperature

interpreted as relative 
improvement in policy 
over previous policy

temperature



Inference for Control
MAP Objective:

Identity:

E-step:
Improves ELBO w.r.t.  

M-step:
Improves ELBO w.r.t. policy



E-step: Maximization w.r.t. q

Consider iteration i:
1. Set 

2. Estimate value function         :

3. Calculate advantages:

Using 
n-step 
targets

On-policy!



E-step: Maximization w.r.t. q

Consider iteration i:
4. Maximize objective:

(Hard) Constrained E-step: 



Consider iteration i:
4. Maximize objective:

E-step: Maximization w.r.t. q

(Hard) Constrained E-step: 

sample based distribution 
over actions for a state

Lagrangian 
Formulation 

Method

Use non-parametric 
variational distribution



Consider iteration i:
4. Maximize objective:

E-step: Maximization w.r.t. q

(Hard) Constrained E-step: 

Engineering:
learning improves substantially if samples corresponding to 
the highest 50% of the advantages in each batch are taken



M-step: Maximization w.r.t

M-step: Partial Maximization w.r.t policy

Here, minimization (due to negative sign):

Weighted 
maximum 
likelihood 
policy loss!

Assumption:
During sample-based computation of the loss, any state-action 
pairs not in the batch of trajectories have zero weight



M-step: Maximization w.r.t

M-step: Partial Maximization w.r.t policy

(Hard) Constrained M-step: 

prevents overfitting on the samples since the constraint 
decreases tendency of the entropy of policy to collapse

For generalized case (minimization, due to negative sign):



Experimental Evaluation



Multi-task Control: DMLab-30 

Experimental Evaluation



Discrete Control: Atari

Experimental Evaluation



Experimental Evaluation

Continuous Control



Summary

▪ Formulation of RL optimization 
problem into an inference problem

▪ Two particular formulations:
▪ MPO: off-policy algorithm
▪ V-MPO: on-policy algorithm

MPO V-MPO

http://www.youtube.com/watch?v=he_BPw32PwU
https://docs.google.com/file/d/1Xf3ezwDFNapibDFNpe7ta6CsDcKODBLQ/preview


Thank you!
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