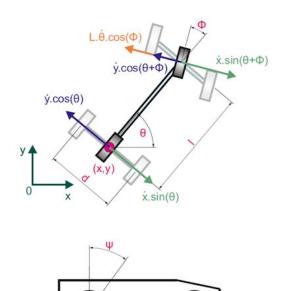
Kinematic Planning for Mobile Manipulators Using Optimal Control

Mayank Mittal

* Giftthaler, Markus, et al. "Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control." 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017.

• Efficiently design controllers that satisfies non-holonomic constraints $g({\bf q}, {\dot {\bf q}}, t) = 0$

• Efficiently design controllers that satisfies non-holonomic constraints $g({\bf q}, {\dot {\bf q}}, t) = 0$



v.sin(0

Example: Car-like robot

Assuming pure rolling contact: $-x\sin\theta + \dot{y}\cos\theta = 0$

 Operational space tracking for mobile manipulation

In-Situ Fabrication 1

In-Situ Fabrication 2

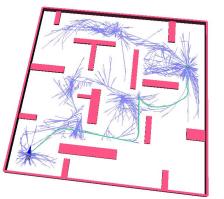
 Most commercially available robots are position/velocity controlled

Kinematic planning

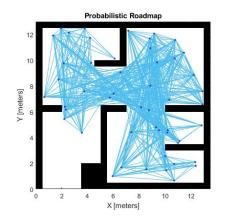
(i.e. dynamics of system is neglected)

 Most commercially available robots are position/velocity controlled

Kinematic planning Prior works produce kinematically feasible solutions but without optimality guarantees



PRM



Contributions

- Introduces 'constrained SLQ' to kinematic planning
 - Kinematic feedback laws are compliant with constraints
 - Does not suffer from issues in other algorithms that employ inverse kinematics (such as when approaching singularities)

^ Constrained Sequential Linear Quadratic Optimal Control

Outline

• Primers:

- Sequential Quadratic Programming
- Constrained SLQ

Algorithm Overview Formulation of planning and control problem

• Receding Horizon Control Setup

• Experiments & Results

Sequential Quadratic Programming Used commonly for constrained non-linear optimization problems $(NLF_{minimize}^{(x)} \leftarrow Linear / quadratic_{function}$ function over $x \in \mathbb{R}^n$ subject to h(x) = 0 $g(x) \le 0$ Affine functions

 Iterative procedure which models NLP for given iterate as a Quadratic Programming (QP) subproblem

Sequential Quadratic Programming Formulation of QP subproblem for current^kiterate Local quadratic approximation of

Local quadratic approximation of
 Abjective f •

$$f(x) \approx f(x^k) + \nabla f(x^k)(x - x^k) + \frac{1}{2} (x - x^k)^T H f(x^k)(x - x^k)$$

• Local affine approximations of $const^{g(x)} \approx g(x^k) + \nabla g(x^k)(x - x^k)$ $h(x) \approx h(x^k) + \nabla h(x^k)(x - x^k)$

Sequential Quadratic Programming Formulation of QP subproblem for current^kiterate Set:

$$d(x) := x - x^k \quad , \quad B_k := Hf(x^k)$$

• QP subproblem:

minimize $\nabla f(x^k)^T d(x) + \frac{1}{2} d(x)^T B_k d(x)$ over $d(x) \in \mathbb{R}^n$ subject to $h(x^k) + \nabla h(x^k)^T d(x) = 0$ $g(x^k) + \nabla g(x^k)^T d(x) \leq 0$,

Constrained SLQ

- Class of dynamic programming algorithm
 - Scales linearly with optimization horizon problem
 - Designs both feedforward plans and feedback controller
- Solves $n \min_{\mathbf{u}(\cdot)} \left\{ \Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} L(\mathbf{x}, \mathbf{u}, t) dt \right\}$ itrol problem subject to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ $\mathbf{x}(t_0) = \mathbf{x}_0$ $\mathbf{g}_1(\mathbf{x}, \mathbf{u}, t) = 0$ $\mathbf{g}_2(\mathbf{x}, t) = 0$

Constrained SLQ

$$\begin{split} \min_{\mathbf{u}(\cdot)} & \left\{ \Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} L(\mathbf{x}, \mathbf{u}, t) dt \right\} \\ \text{subject to} \\ \dot{\mathbf{x}} &= \mathbf{f}(\mathbf{x}, \mathbf{u}) \\ \mathbf{g}_1(\mathbf{x}, \mathbf{u}, t) &= 0 \end{split} \begin{array}{l} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{g}_2(\mathbf{x}, t) &= 0 \end{aligned} \begin{array}{l} \text{Time-varying} \\ \text{linear feedback} \\ \text{control law} \\ \mathbf{u}(\mathbf{x}, t) &= \mathbf{u}_{ff}(t) + \mathbf{K}(t)\mathbf{x}(t) \end{aligned} \end{split}$$

In each iteration:

- 1. Approximate above with local QP subproblem
- 2. Solve using Riccati-based approach

Constrained SLQ

Algorithm 1 SLQ Algorithm

Given

- Mode switch sequence and switching times
- Cost function (4) and system dynamics (5)

Initialization

- Initialize the controller with a stable control law, $\boldsymbol{u}_0(\cdot)$

repeat

- Forward integrate system dynamics: $\{ \bar{\mathbf{x}}(z), \bar{\mathbf{u}}(z) \}_{z=0}^{I}$,
- Compute the LQ approximation of the problem along the nominal trajectory, (7) and (8).

- Solve the final value differential equations, (9-11).

- Line search for the optimal α with policy (17)

- Update control law: $\mathbf{u}^*(z, \mathbf{x}) = \bar{\mathbf{u}}(z) + \alpha^* \mathbf{l}(z) + \mathbf{L}(z) \delta \mathbf{x}$ until $\|\mathbf{l}(\cdot)\|_2 < l_{min}$ or maximum number of iterations

Farshidian, Farbod, et al. "Sequential linear quadratic optimal control for nonlinear switched systems." *IFAC-PapersOnLine* 50.1 (2017): 1463-1469.

Outline

• Primers:

Sequential Quadratic Programming
 Constrained SLQ

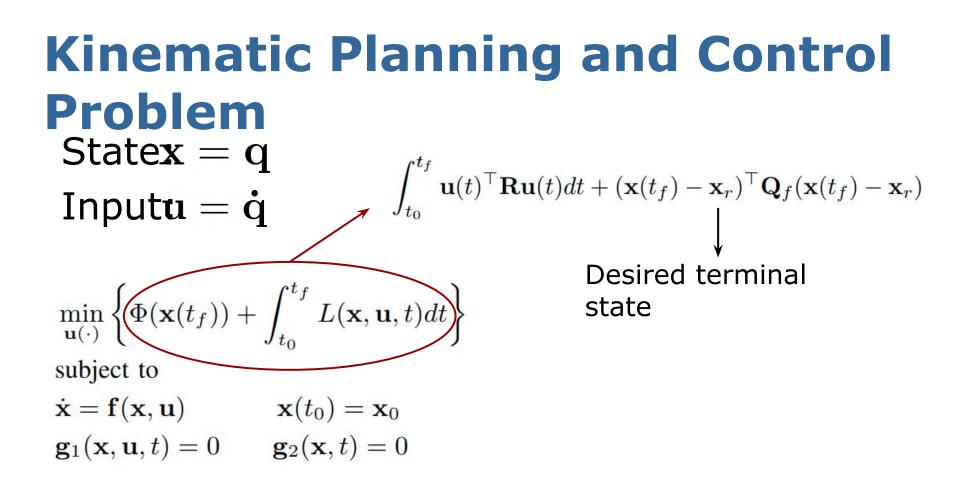
• Algorithm Overview

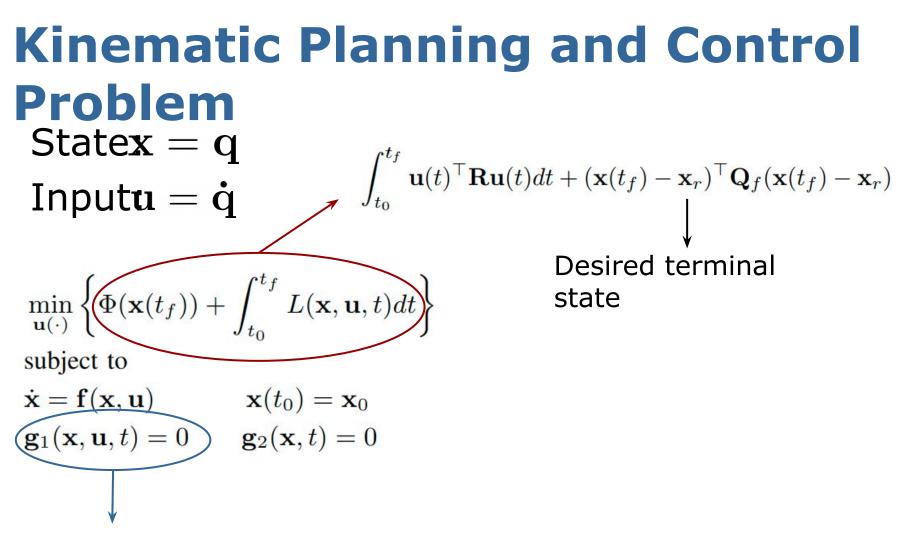
- Formulation of planning and control problem
- Receding Horizon Control Setup

• Experiments & Results

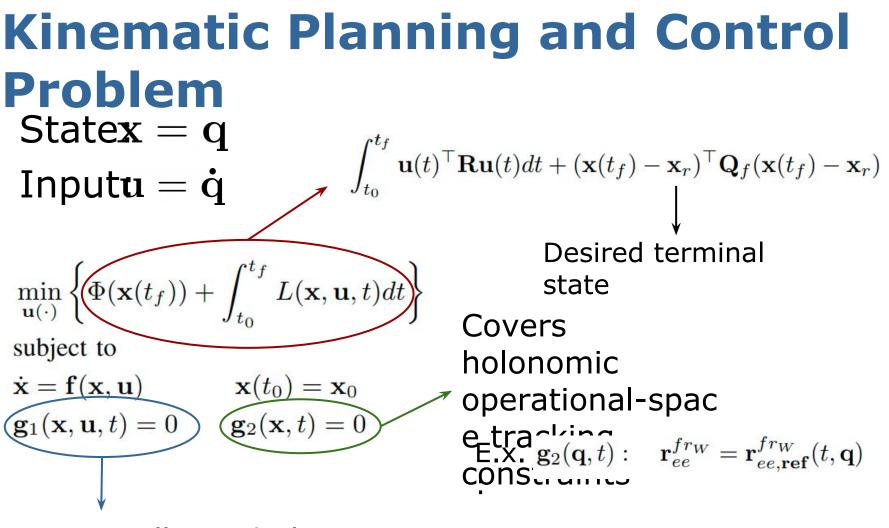
Kinematic Planning and Control Problem State x = qInputu = \dot{q}

$$\begin{split} \min_{\mathbf{u}(\cdot)} & \left\{ \Phi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} L(\mathbf{x}, \mathbf{u}, t) dt \right\} \\ \text{subject to} \\ \dot{\mathbf{x}} &= \mathbf{f}(\mathbf{x}, \mathbf{u}) \qquad \mathbf{x}(t_0) = \mathbf{x}_0 \\ \mathbf{g}_1(\mathbf{x}, \mathbf{u}, t) &= 0 \qquad \mathbf{g}_2(\mathbf{x}, t) = 0 \end{split}$$



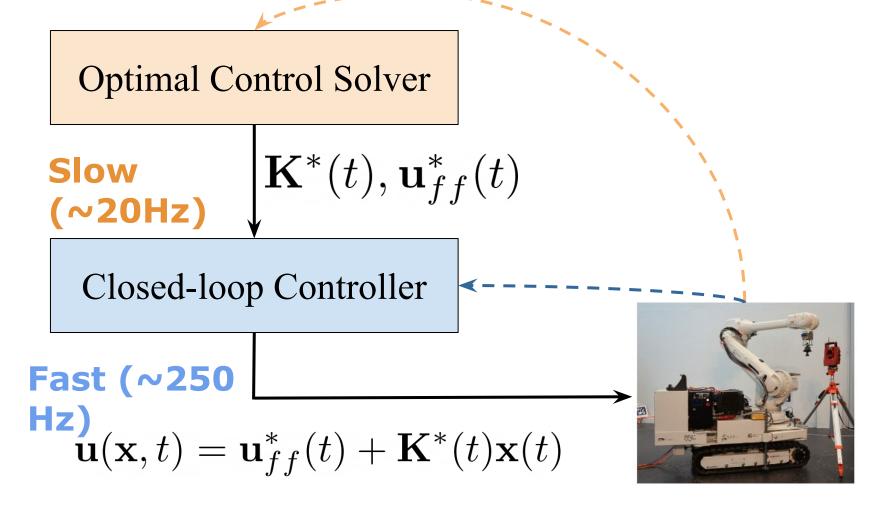


Covers all non-holonomic constration $\mathbf{g}_1(\mathbf{q}, \dot{\mathbf{q}}, t) = 0$



Covers all non-holonomic constrates $\mathbf{g}_1(\mathbf{q}, \dot{\mathbf{q}}, t) = 0$

Receding Horizon Optimal Control Setup



Outline

• Primers:

- Sequential Quadratic Programming
 Constrained SLQ
- Algorithm Overview
 - Formulation of planning and control problem
 - Receding Horizon Control Setup
- Experiments & Results

Experiments

IF1: Tracked Mobile Manipulator
IF2: Legged/wheeled mobile robot with DoF 26

In-Situ Fabrication 1

In-Situ Fabrication 2

Wheel Constraints:

Rolling condition
Wheel should not lift off of the around $\mathbf{g}_1(\mathbf{q}, \dot{\mathbf{q}}, t) := \mathbf{v}_P^{fr_W} = 0$

$$\begin{split} \mathbf{v}_{P}^{fr_{W}} &= \mathbf{R}_{fr_{B}}^{fr_{W}}(\boldsymbol{\theta}) \cdot \left(\mathbf{v}_{B}^{fr_{B}} + \mathbf{v}_{P}^{fr_{B}} + \boldsymbol{\omega}_{B}^{fr_{B}} \times \mathbf{r}_{BP}^{fr_{B}}\right) \\ \begin{bmatrix} \boldsymbol{\omega}_{C}^{fr_{B}\top} & \mathbf{v}_{C}^{fr_{B}\top} \end{bmatrix}^{\top} &= \mathbf{J}_{C}^{fr_{B}}(\boldsymbol{\varphi}) \cdot \dot{\boldsymbol{\varphi}} \end{split}$$

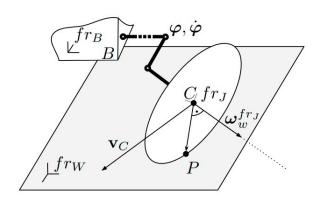
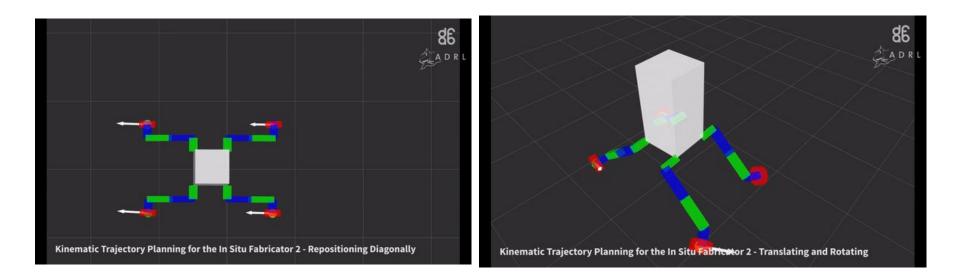


Fig. 2. Sketch of an ideal wheel attached to the robot's trunk through an arbitrary serial chain of joints and links.



Robot needs to move to location (1, 1)

Robot has to translate 1m away and rotate trunk by 180 degrees

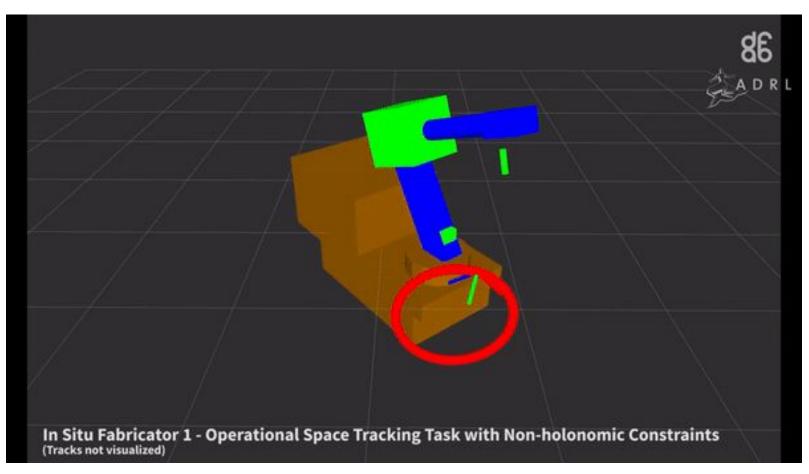
Tracks simplified to two -wheel model

$$\dot{y}_c \cos \theta - \dot{x}_c \sin \theta - \dot{\theta} d = 0$$

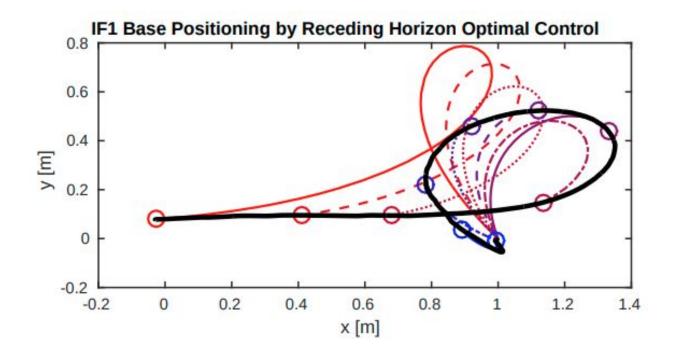
Operational-space tracking constraint

$$\mathbf{g}_{1}(\mathbf{q}, \dot{\mathbf{q}}, t): \quad \mathbf{v}_{ee}^{fr_{W}} = \mathbf{v}_{ee, \mathbf{ref}}^{fr_{W}}(t, \mathbf{q}, \dot{\mathbf{q}}) \quad \text{or} \\ \mathbf{g}_{2}(\mathbf{q}, t): \quad \mathbf{r}_{ee}^{fr_{W}} = \mathbf{r}_{ee, \mathbf{ref}}^{fr_{W}}(t, \mathbf{q}) .$$

Note: Reference positions and velocities trajectories need to be continuous and differentiable.



End-effector needs to follow given task-space trajectory



Computed paths for base repositioning/ reorientation task using RHOC

Remarks

- Proposed method has linear time complexity in local regime w.r.t. time horizon
 - Note: not intended to compete with planners in cluttered environments
- Uses adaptive step-size ODE solver
- Achieves 50-100 Hz replanning rates (for IF2) on single core CPU

Ongoing usages of constrained SLQ

Grandia, Ruben, et al. "Feedback MPC for Torque-Controlled Legged Robots." *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)*. 2019.



Minniti, Maria Vittoria, et al. "Whole-body mpc for a dynamically stable mobile manipulator." *IEEE Robotics and Automation Letters* 4.4 (2019): 3687-3694.

Thank you for your attention!