Hierarchical Reinforcement Learning (Part II)

Mayank Mittal

What are humans good at?

1. Exit ETZ building 2. Cross the street

3. Eat at mensa

1. Exit ETZ building

- → Open door
- → Walk to the lift
- → Press button
- → Wait for lift
- **→**

2. Cross the street

- → Find shortest route
- → Walk safely
- → Follow traffic rules
- **→**

3. Eat at mensa

- → Open door
- → Wait in a queue
- → Take food
- →

What are humans good at?

Temporal abstraction

1. Exit ETZ building

- Open door
- → Walk to the lift → Walk safely
- → Press button
- → Wait for lift
- \rightarrow

2. Cross the street

- → Find shortest route
- → Follow traffic rules

3. Eat at mensa

- → Open door
- → Wait in a queue
- → Take food

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

1. Exit ETZ building

- → Open door

- → Wait for lift

2. Cross the street

- → Find shortest route → Open door
- → Press button → Follow traffic rules

3. Eat at mensa

- → Walk to the lift → Walk safely → Wait in a queue
 - → Take food

How to represent these different goals?

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

Powerful/meaningful state abstraction

What are humans good at?

Temporal abstraction

Transfer/Reusability of Skills

Powerful/meaningful state abstraction

Can a learning-based agent do the same?

Promise of Hierarchical RL

Structured exploration

Long-term credit assignment (and memory)

Transfer learning

Hierarchical RL

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning(NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

emporal Resolution

Detour: Dilated RNN

 Able to preserve memories over longer periods

Idea: A single sub-goal (direction) can be reused in many different locations in state space

Intrinsic reward

$$d_{cos}(s_{t+1} - s_t, g_t) = \frac{(s_{t+1} - s_t)^T g_t}{|s_{t+1} - s_t||g_t|}$$

Intrinsic reward

$$r_{t+c}^{I} = \frac{1}{c} \sum_{i=t}^{t+c} d_{cos}(s_{t+c} - s_i, g_i)$$

Why not do end-to-end learning?

Manager & Worker: Separate Actor-Critic

Qualitative Analysis

Ablative Analysis

Ablative Analysis

Comparison

Action Repeat Transfer

— FuN — FuN transfer — LSTM — LSTM transfer

On-Policy Learning

Off-Policy Learning

Reusage!

Off-Policy Learning •••

Unstable Learning

Off-Policy Learning •••

Unstable Learning

To-Be-Disclosed

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning(NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Rollout sequence

Intrinsic reward

$$r_I(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t - s_{t+1}||_2$$

$$\left(s_t, g_t, \sum_{i=t}^{t+c-1} r_i, s_{t+c}\right)$$

$$(s_t, g_t, a_t, r_t^I, s_{t+1}, g_{t+1})$$

Off-Policy Learning •••

To-Be-Disclosed

Off-Policy Learning •••

Unstable Learning

Manager's past experience might become useless

Off-Policy Learning 🙃

t = 12 yrs

Off-Policy Learning

Goal: "wear a shirt"

Same goal induces different behavior

Off-Policy Learning

Off-Policy Correction for Manager

$$(s_{t'}, g_{t}) \sum_{i=t'}^{t'+c-1} r_i, s_{t'+c})$$

$$\tilde{g}_{t'} = \operatorname{argmax} \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$
where $\tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \ \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$
where $\tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$

Ant Push

Qualitative Analysis

Ablative Analysis

Comparison

	Ant Gather	Ant Maze	Ant Push	Ant Fall
HIRO	3.02±1.49	0.99 ± 0.01	$0.92{\pm}0.04$	$0.66 {\pm} 0.07$
FuN representation	0.03 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
FuN transition PG	0.41 ± 0.06	0.0 ± 0.0	0.56 ± 0.39	0.01 ± 0.02
FuN cos similarity	0.85 ± 1.17	0.16 ± 0.33	0.06 ± 0.17	0.07 ± 0.22
FuN	0.01 ± 0.01	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
SNN4HRL	1.92 ± 0.52	0.0 ± 0.0	0.02 ± 0.01	0.0 ± 0.0
VIME	1.42 ± 0.90	0.0 ± 0.0	0.02 ± 0.02	0.0 ± 0.0

Comparison

HIRO

VIME

SNN4HRL

What is missing?

Structured exploration

Hierarchical RL

FeUdal Networks for Hierarchical Reinforcement Learning (ICML 2017)

Data-Efficient Hierarchical Reinforcement Learning (NeurIPS 2018)

Meta-Learning Shared Hierarchies (ICLR 2018)

Computer Vision practice:

- Train on ImageNet
- Fine tune on actual task

Computer Vision practice:

- Train on ImageNet
- Fine tune on actual task

How to generalize this to behavior learning?

GOAL: Find sub-policies that enable fast learning of master policy θ

GOAL: Find sub-policies that enable fast learning of master policy θ

maximize
$$\phi E_{M \sim P_M, t=0...T-1}[R]$$

```
repeat Initialize \theta Sample task M \sim P_M for w=0,1,...W (warmup period) do Collect D timesteps of experience using \pi_{\phi,\theta} Update \theta to maximize expected return from 1/N timescale viewpoint end for
```

for u=0,1,...UCollect D times Update θ to max Update ϕ to max end for until convergence

timescale viewpoint mescale viewpoint

 $\begin{array}{l} \textbf{for}\ u=0,1,....U\ \ (\text{joint update period})\ \textbf{do} \\ \text{Collect}\ D\ \text{timesteps of experience using}\ \pi_{\phi,\theta} \\ \text{Update}\ \theta\ \text{to maximize expected return from}\ 1/N\ \text{timescale viewpoint} \\ \text{Update}\ \phi\ \text{to maximize expected return from full timescale viewpoint} \\ \textbf{end for} \end{array}$

until convergence

```
Initialize \phi
repeat
  Initialize \theta
  Sample task M \sim P_M
  for w = 0, 1, ...W (warmup period) do
     Collect D timesteps of experience using \pi_{\phi,\theta}
     Update \theta to maximize expected return from 1/N timescale viewpoint
  end for
  for u = 0, 1, ....U (joint update period) do
     Collect D timesteps of experience using \pi_{\phi,\theta}
     Update \theta to maximize expected return from 1/N timescale viewpoint
     Update \phi to maximize expected return from full timescale viewpoint
  end for
until convergence
```

Ant Two-walks

Ant Obstacle Course

Movement Bandits

Comparison

Ablative Analysis

Ablative Analysis

Four Rooms

Goal states are given a terminal value of 1

4 rooms

4 hallways

4 unreliable primitive actions

8 multi-step options (to each room's 2 hallways)

Given goal location, quickly plan shortest route

All rewards zero $\gamma = .9$

Comparison

Summary

FUN

- Directional goals
- Dilated RNN
- Transition Policy Gradient

HIRO

- Absolute goals in observation space
- Data-efficient
- Off-policy label correction

MLSH

- Generalization in RL algorithm
- Inspired from "Options" framework

Discussion

 How to decide temporal resolution (i.e. c, N)?

Do we need discrete # of sub-policies?

• Future prospects of HRL? More hierarchies?

Thank you for your attention!

Any Questions?

Let's go and have lunch!

References

- Vezhnevets, A.S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., & Kavukcuoglu, K. (2017). FeUdal Networks for Hierarchical Reinforcement Learning. *ICML*.
- Nachum, O., Gu, S., Lee, H., & Levine, S. (2018).
 Data-Efficient Hierarchical Reinforcement Learning. NeurIPS.
- Frans, K., Ho, J., Chen, X., Abbeel, P., &
 Schulman, J. (2018). Meta Learning Shared
 Hierarchies. CoRR, abs/1710.09767.

Appendix

Hierarchical RL

Hierarchical RL

Detour: A2C

update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$

evaluate
$$\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') - \hat{V}_{\phi}^{\pi}(\mathbf{s})$$

 $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Image Credits: Sergey Levine (2018), CS 294-112 (Lecture 6)

Advantage Function: $A_t^W = r_t + \alpha r_t^I - \hat{V}_t^W(o_t; \theta)$ Update Rule: $\nabla \pi_t = A_t^W \nabla_{\theta} log \pi(a_t | o_t; \theta)$ **Policy Gradient** $z_t \in \mathbb{R}^d$ $w_t \in \mathbb{R}^{k \times 1}$ a_{t+1} Worker Wrnn $U_t \in \mathbb{R}^{|a| \times k}$

Advantage Function:
$$A_t^M = r_t - \hat{V}_t^M(o_t; \theta)$$

Update Rule:
$$\nabla g_t = A_t^M \nabla_{\theta} d_{cos}(s_{t+c} - s_t, g_t(\theta))$$

Transition Policy Gradient

Transition Policy Gradient

$$\nabla_{\theta} g_t = \mathbb{E}_{\pi_{t,\theta}}[(R_t - V(s_t))\nabla_{\theta} log(\pi_{t,\theta}^{TP}(s_{t+c}|s_t))]$$
$$= \mathbb{E}[(R_t - V(s_t))\nabla_{\theta} log(p(s_{t+c}|s_t,\theta))]$$

Assumption:

- Worker will eventually learn to follow the goal directions
- Direction in state-space follows von Mises-Fisher distribution

$$p(s_{t+c}|s_t,\theta) \propto \exp(d_{cos}(s_{t+c}-s_t,g_t(\theta)))$$

Learnt sub-goals by Manager

Memory Task: Non-Match

Memory Task: T-Maze

Memory Task: Water-Maze

FeUdal Networks (FUN)

FeUdal Networks (FUN)

Network Structure: TD3

Manager

Actor-Critic with 2-layer MLP each

Worker

Actor-Critic with 2-layer MLP each

For more details: Fujimoto, S., et. al (2018). Addressing Function Approximation Error in Actor-Critic Methods. *ICML*.

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \ \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$
where $\tilde{g}_{t'+1} = h(s_{t'}, \tilde{g}_{t'}, s_{t'+1})$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \ \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

$$= \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \log(\mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1}))$$

$$\alpha - \frac{1}{2} \sum_{i=t'}^{t'+c-1} ||a_i - \mu^{lo}(s_i, \tilde{g}_i)||_2^2 + \text{constant}$$

Approximately solved by generating candidate goals $ilde{g}_{t'}$

Off-Policy Correction for Manager

$$\tilde{g}_{t'} = \underset{\tilde{g}_{t'}}{\operatorname{argmax}} \ \mu^{lo}(a_{t':t'+c-1}|s_{t':t'+c-1}, \tilde{g}_{t':t'+c-1})$$

Approximately solved by generating candidate goals $ilde{g}_{t'}$:

- Original goal given: $g_{t'}$
- Absolute goal based on transition observed: $s_{t'+c} s_{t'}$
- Randomly sampled candidates:

Training

- 1. Collect experience s_t , g_t , a_t , R_t ,
- 2. Train μ^{lo} with experience transitions $(s_t, g_t, a_t, r_t, s_{t+1}, g_{t+1})$ using g_t as additional state observation and reward given by goal-conditioned function $r_t = r(s_t, g_t, a_t, s_{t+1}) = -||s_t + g_t s_{t+1}||_2$.
- 3. Train μ^{hi} on temporally-extended experience $(s_t, \tilde{g}_t, \sum R_{t:t+c-1}, s_{t+c})$, where \tilde{g}_t is relabelled high-level action to maximize probability of past low-level actions $a_{t:t+c-1}$.
- 4. Repeat.

Environments

Ant Fall

Ant Gather

Network Structure: PPO

Manager

2-layer MLP with 64 hidden units

Each sub-policy

2-layer MLP with 64 hidden units

For more details: Schulman, J., et. al (2017).. Proximal Policy Optimization Algorithms. CoRR, abs/1707.06347

Training

Reward on Walk/Crawl combination task	
MLSH Transfer	14333
Shared Policy Transfer	6055
Single Policy	-643

Reward on Ant Obstacle task	
MLSH Transfer	193
Single Policy	0

Recurrent Neural Network

 Useful when input data is sequential (such as in speech recognition, language modelling)

Stochastic NN for HRL (SNN4HRL)

Aims to learn useful skills during pre-training and then leverage them for learning faster in future tasks

Variational Information Maximizing Exploration (VIME)

Exploration based on maximizing information gain about agent's belief of the environment