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1 Introduction

After the whooping success of deep neural networks in machine learning problems, deep generative
modeling has come into limelight. Generative modeling is the task of learning the underlying com-
plex distribution which generated a given set of data. One of the popular approach for generative
modeling is Variational Autoencoder (VAE) [8]] and has received a lot of attention in the past few
years reigning over the success of neural networks. Variational Autoencoders are a class of deep
generative models based on variational method [3]. In the work, we aim to develop a through under-
standing of the variational Autoencoders, look at some of the recent advances in VAEs and highlight
the drawbacks of VAEs particularly in text generation.

2 Background

2.1 Problem Description

Consider a typical Bayesian learning setup for generative modeling in which there are some ob-
servable data x = {x1,X2,...,Xn} that need to be model through some latent variables z =
{21, 22, ..., Z;m }. Mathematically speaking the objective is to to maximize the probability of each x
in the observed data under the generative process, that is:

p(x) = / p(x|z)p(z)0z

The key idea behind VAEs is that in higher dimensions most z would give p(x|z) as zero. Hence,
instead of trying to compute the intractable distribution p(z|x), a simpler function ¢(z|¢) is com-
puted that can provide a distribution over the latent variables that are more likely to produce the
observations x. This is done by minimizing the KullbackLeibler (KL) divergence between the two
distributions as shown below:

q*(2z) = argmin Dx 1 [q(z)||p(z[x)] (1)
q(z)€Q

where Q is family of distributions over latent variables z. However, due to the dependency of the
KL divergence on the evidence p(x), the evidence lower bound (ELBO) is optimized instead:

ELBO(q) = Ey[log p(z)] + E4[log p(x|z)] — Eq[log ¢(z)]
= Ey[log p(x|z)] — Dk 1[q(2)]|p(z)]

2.2 Amortized Variational Inference

Traditional approaches in variational inferences (VI) like mean-field VI or hierarchal VI iterate
over the observed data and update the variational parameters through closed-form coordinate ascent
updates. These methods suffer from the disadvantages for being difficult to scale for large datasets
and extending to non-conjugate models.

On the other hand, amortized VI utilizes the inferences from the past computations to support fu-
ture computations. It assumes that the latent variables can be predicted by a global parametrized



function of the data. Once this function has been estimated, passing new data points through the
function would provide the latent variables. Deep neural networks or inference networks can be
used to estimate this function and helps combine the representational power of deep learning with
probabilistic modeling.

VAE:s is one of the popular class of models for amortized VI and was initially proposed for inference
in deep latent Gaussian models (DLGM) by two separate groups in [8] and [12]. In variational
autoencoders (VAEs) two sets of neural networks are used:

e top-down generative model: mapping from the latent variables z to the data x

e bottom-up inference model: approximates posterior p(z|x)
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Figure 1: Right Image: Encoder/Recognition Network, Left Image: Decoder/Generative Network.
Image courtesy: http://videolectures.net/deeplearning2015_courville_
autoencoder_extension/

Referring to the graphical model for a variational autoencoder in Figure 2] VAEs employ an amor-
tized variational distribution to approximate the posterior:

N
g6 (2x) = [ ] g0 (zil2:) )
=1

This distribution does not depend on the local parameters and is typically chosen as g4(z;|z;) =
N (zi|p(z;), 0%(2;)I) where where p(x;) and 0% (z;) are non-linear mapping of data obtained from
the neural network.

During optimization, the inference and generative networks are trained together by making use of
the reparameterization trick and using stochastic gradients for the model’s ELBO. Given multiple
datapoints XM = {x(i) M. drawn randomly from a dataset X with N datapoints, the estimated
ELBO L is estimated using Monte-Carlo approximation:

L(0,6,X) ~ LM(0,¢,X) = LM (8, ¢,xD) 3)
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Figure 2: Graphical Model for Variational Autoencoder

3 Recent Advances in VAEs

A lot of developments [15] have been proposed over the standard VAE model that was initially
introduced in [8]]. In this section, we very briefly highlight the advantages of some of these advance-
ments.

3.1 More Expressive Likelihoods

Standard VAE assumes that the likelihood factorizes over dimensions. This may result in poor
approximation for tasks involving images. The following approaches have been proposed in order
to overcome this:

Deep Recurrent Attentive Writer (DRAW) [4] is a neural network architecture for generating
images. It uses a sequential auto-encoding framework to gradually construct the observations while
automatically focusing on Rol.

PixelVAE [J], on the other hand, models the dependencies between pixels within an image as

po(zi | zi) = [, po(z) | xl,x?,... 277 ") where 2 denotes the j** dimension of the obser-
vation 7. By doing so, the dimensions are generated in a sequential fashion and accounts for the

local dependencies present.

3.2 More Expressive Posteriors

Mean field approach used in standard VAEs lacks expressiveness for modeling a complex posterior.
This problem is often resolved by easing out the modeling assumptions in the inference network and
tightening the variational bound. A few methods which can be used to do so are:

Importance-weighted VAEs (IWAE) [1]] provides increased flexibility to model complex poste-
riors which do not fit the VAE modeling assumptions. It requires L weighted samples from the
Po (Xi,2(i,1))

approximate posterior with weights w; o IRCTREDE

As L — oo the implicity distribution would
converge to the true posterior.

Normalizing flows [11] proposes to transform a simple approximate posterior into a expressive one
by a series of successive invertible transformations. This helps in generating multi-modal distribu-
tions from a simple distribution, thus enabling modeling of complex posterior.

3.3 Implicit Distributions

VAES rely on parametric models which further limits its ability to model complex data. Generative
Adpversarial Networks (GAN) is a popular way to learn implicit distributions to represent unknown
densities. Larsen et.al [9] have been proposed to train a GAN-style discriminator between target
distribution and variational distribution where latter is the implicit distribution.
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Figure 3: Diagram of VaDE. Source: [7]]

4 Generative Approach to Clustering

Clustering is defined as the process of grouping objects into clusters based on similarity between
them. Similar objects are put into the same cluster and dissimilar objects are put into different
clusters. Clustering approaches can be broadly classified into 2 categories, which are:

1. Similarity-based clustering: Similarity based methods measure distance between each
pair of samples. If there are N samples, a N x N similarity-matrix is created, example:
Spectral Clustering (SC)

2. Feature-based: This method clusters based on the feature vector of the sample points, and
there is not per pair evaluation as such. It takes N X D matrix as input, where /N is number
of samples and D is the feature dimension, examples:

e K- Means Clustering
e Gaussian Mixture Model (GMM)

One of the key thing that affects the performance of Feature-based methods is the quality of the
feature representation of the samples. Features from deep neural networks have been proven very
successful in many machine learning problems. Thus, it is seems intuitive to use deep features
for clustering. Along with this, it is also important to have a clustering model which can generate
new samples from a given cluster. If the model is learning the inherent distribution underlying
the data, it should be able to generate new samples from this. We look at the method ‘Variational
Deep Embedding: An Unsupervised and Generative Approach to Clustering’ by Zhuxi Jiang er
al. [[7], which uses deep generative models(VAE) with GMM to achieve this. This also provides an
unsupervised learning method for deep generative models.

Variational Deep Embedding The generative story for the method VaDE by Jiang et al. [7] is as
follows:
1. A cluster ¢ picked up using GMM model, ¢ ~ cat(7)
2. Alatent vector is sampled from that cluster ¢ as: z ~ N (.., 02 .I)
3. A NN-based decoder is used to map this latent vector to the data point x using :
o f(z;0) maps z to (puz, logo?);
o x ~ N(pz,021)

Similar to VAEs, a NN-based encoder g(x; ¢), is used to model ¢(z|x). This along with the genera-
tive story is illustrated in FigH]

The inference for this model is similar to the VAE. Evidence lower bound (ELBO) for this generative
process can be written as:

B p(x,2,c)
£ = Eqtacho [log Q(Z,C|X)]

= Ey(z,c|x) [log p(x|2) + log p(z|c) + log p(c) — log q(z[x) — log q(c|x)]
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Figure 4: Diagram of CVAE. Source: [[13]

The above is solved using SGVB estimator and the re-parameterization trick (shown in [[7]])
After completing the training by maximizing ELBO w.r.t parameters {7, u.,o.,0,0}, ¢ €
{1, .., K}, at the test time for each observed sample x:

o the latent representation z is given as:
q(zlx) = N(z|f; 6°T)

where [f1;log 5%] = g(x; ¢)
e and the cluster assignment c is given as:

p(ze)p(c)
Yo (zle)p(e)

Thus one can easily get the cluster id for a new sample, just like most clustering methods. This
method can also generate new unseen samples from a given class using the procedure described in
the generative story and shown in Fig[] It is important to note that the generation is conditioned on
the cluster id. Experimental results in [[7]] show that VaDE outperforms state-of-art methods on the
clustering task. It is also shown to generate highly realistic samples.

q(clx) = p(efx) =

5 Conditional VAEs and Structured Prediction

VAEs have been widely used for generating images, but VAEs have no control over the generation
process. In Conditional VAE [13] the output is conditioned on an other variable. This helps to
generate specific data, conditioned on some variable, for eg. generating digit images in MNIST we
conditioned on the class label. Fig[l]

The generative story for the model proposed by Sohn et al. is as follows:

1. For a given input x, a latent vector z is sampled from the prior network as :z ~ pg(z|z)

2. The output is generated using a NN-based decoder: py(y|z, x)

It is very important to note that unlike the traditional VAE where the output is generated just using
the latent vector z, here both the latent vector z and input x are used to generate the output. This
is illustrated in Fig[5] Thus, the input observations modulate the prior on Gaussian latent variables
which generates the output. A NN-based encoder is used for recognition: g4(z|y, z), as shown in

Fig[3]
This model can also be used for structured output prediction [[13]]. It also allows for multiple modes
in conditional distribution of y given x: py(y|x), by virtue of the latent variable z, i.e one-to-many

mapping. Unlike the normal Deep neural network where the output y is a one-to-one mapping of
the input x.

The inference is done in the in Stoachstic Gradient Variational Bayes (SGVB) framework [8]] in a
fashion similar to VAE. The empirical lower bound can be written as:

L
Lovar(x,y;0,¢) = —Drrlas(zlx,y)||pe(2 Z log pe (y|x,2")]

where z() = g(x,y,e"), ) ~ N(0,1) and L is the number of examples. This can be solved
using SGVB estimator and the re-parameterization.



5.1 Experiments
5.1.1 CVAE

We implemented the conditional VAE method [13]. Kristiadi’s blog E] was used as a reference for
this implementation. The CVAE was trained on MNIST dataset, which is composed of images of
digits from 0 to 9. Fig[T|shows the results of generation of digits conditioned on their class labels.
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Table 1: Results generated by CVAE implementation in PyTorch on MNIST, conditioned on class
labels. It can be seen that images for 1,7,8 and 7 are generated very well because they are unique.
However, while generating there is some confusion between 4 and 9; 7 and 9; 2 and 3; 4 and 5; since
these pairs look similar to each other.

5.1.2 VAE

We also implemented the VAE model proposed by Kingma et al., to compare the results with CVAE.
Both the models were trained on the same dataset MNIST, in PyTorch, and the same NN-encoder
and NN-decoder was used. This was done to understand the difference the conditioning on digit
labels makes in the generation results. Fig[2] shows the quality of images generated by our VAE
implementation.

"https://wiseodd.github.io/techblog/2016/12/17/conditional-vae/


https://wiseodd.github.io/techblog/2016/12/17/conditional-vae/

Table 2: Digits generated by the original VAE model. It is important to note that the image genera-
tion is not conditioned on anything in this case.

6 Challenges with Variational Autoencoders

6.1 Sub-Optimality in Inference

Cremer et al. in [2] highlighted inference sub-optimality in Amortized VI due to an approximation
gap (because of the particular variational family chosen) and amortization gap (created because of
the gap between the log-likelihood and the ELBO due to amortization).

log p(x) '
Approximation
Gap
Amortization
Gap
Llq] '

Figure 5: Gaps in Inference. Here L[g] is the ELBO evaluated using amortized distribution ¢, and
L[q*]: ELBO evaluated using optimal approximation within its variational family

In their work, to reduce the amortization gap, they proposed an inference network over input to
initialize the variational parameters, and then refine them through stochastic VI (SVI). Unlike in
Amortized VI, they compute the derivate of the ELBO through back-propagation using SVI updates
which can be done efficiently using fast Hessian-vector products [[10].

6.2 Text-related Applications

One of the main challenges with text data is that the words are discrete in nature, unlike image data
which is real-valued. Although VAEs have been shown to generate realistic images, text generation
is still an open problem. To overcome this, one of the approaches proposed is to keep a mapping
from the discrete word space to a continuous word space.

Ways to encode semantic information into the latent variable is being explored currently. One other
common problem faced in text generation using VAEs is that the model can sometimes generate
the next word in a sentence using the grammar rules only without taking the latent vector into
consideration. Therefore it is necessary to enforce the model to use information from the latent
vector, for which different solutions have been proposed.



7 Ongoing Work

At the moment we are working on Unsupervised structured prediction problem. Structured predic-
tion problem is a very important problem in Computer Vision. More specifically, we are working on
segmentation on the Caltech-UCSD Birds (CUB) [14] dataset.

8 Conclusion

VAEs are a very powerful generative model based on autoencoders and Bayesian neural networks
setup. They have been shown to be successful in various domains ranging from supervised learning
problems including conditional image generation to unsupervised learning problems like cluster-
ing. Conditional generation is much easier with VAEs. VAEs for text generation still has a lot of
challenges because of the discrete nature of text data, and is a hot area of research.
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A Stochastic Variational Inference
Applies stochastic optimization with mini-batches to obtain stochastic estimate of ELBO [6]
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Figure 6: Graphical Model for Stochastic VI

B VAE Objective Function

In variational inference, computing KL is difficult as it depends on evidence p(x)
Dxlq(2)[[p(z]x)] = Eq[log ¢(2)] — Ey[log p(z[x)]
= Eq[log q(z)] — Eq[log p(z, x)]
+ Eq[log p(x)]

VAEs introduce an inference machine g4(z|x) that learns to approximate the posterior py(z|x).
Suppose that z is sampled from some arbitrary distribution with pdf g, (z). The relationship between
E,~q6(z) [Po(x|2)] and p(x) can be written as:
Dk 1[96(2)[[po(2[%)] = Ezng, 2 [log p(2) — log po(z[x)]
= Dk 1[4(2)||po(2]x)] = Epng, (z) [log p(2) — log po(x|z) — log ps(z)] + log p(x)
— logp(x) — D 11q¢(2)||pe(2]x)] = Bz, (z)[l0g po(x|2)] + Dr L1g(2)|Ips(2))

In above equation the LHS has the quantity we want to maximize: log ps(x), while RHS is some-
thing we can optimize via stochastic gradient descent given the right choice of q.

As explained in Section 2, we have solved our problem of sampling z by training a distribution ¢ to
predict which values of z are likely to produce x and ignoring the rest. Variational lower bound £
on the data likelihood s.t. pg(x) > L(8, ¢, x), where
( ¢7 ) qd)(z\x) [logpg(x Z) IOg Q¢(Z|X)
Eq, (z1x)[log pe (x|2) + log pe(z) — log g4 (z[x)
= —Dr1[gs(2[x[po(2)] + Eq, (a/x) [log o (x[2)]

NOTE: —Dr[q4(2|x]||pe(2)] is a regularization term, and E, (,x) [log pa (x|2)] is a reconstruction
term
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