Handling Failures In A Swarm

Gaurav Verma', Lakshay Garg?, Mayank Mittal®

Abstract— Swarm robotics is an emerging field of
robotics research which deals with the study of large
groups of simple robots. Swarms can exhibit complex
behaviors even when each of the member robot
performs only simple actions. Since swarms involve
interaction and cooperation between multiple robots,
they are seen as more robust, flexible and efficient as
compared to traditional single agent systems [1]. In
this project, we worked on a method which allows a
swarm to diagnose faults and take corrective actions
autonomously.

I. INTRODUCTION

Swarm robotics is a field of robotics research
inspired by the emergent behavior of large groups
of simple creatures. Swarms exhibit complex be-
havior unknown to individual agents. It is believed
that swarms more robust, flexible and efficient as
compared to traditional single agent systems but
these characteristics are not something which are
inherent to the system and are only achieved by
careful design and robust algorithms. The potential
of such systems remains largely under-utilized
because of the challenges and complexities involved
in multi-robot systems. Despite their challenges,
they can be used to accomplish complex tasks with
simple robots by collaboration and load sharing
among agents and therefore are a promising field
of research. If swarms are to be used in industrial
and other useful applications then they must be
made more reliable and tolerant to faults. Several
approaches have been explored by different authors
over the years. In this project, we take inspiration
from the work done in field of wireless sensor net-
works (WSN) [2] and implement a majority voting
based algorithm to detect and remedy faults in a
swarm of quadrotors.

II. PROBLEM STATEMENT

Swarms of robots provide us with more flexibility
and efficiency but can fail catastrophically if one of
the agent fails. In this project we deal with the prob-
lem of ensuring that a swarm can keep functioning
without any manual intervention. In particular, we
consider the scenario in which a swarm (possibly
heterogeneous) is assigned a task which must be
completed by its agents. The swarm may suffer

lgverma@iitk.ac.in
2lakshayg@Riitk.ac.in
Smayankm@iitk.ac.in

from failures time-to-time. We also have some other
robots which can be used as substitutes to replace
the ones which are working in the swarm.

ITI.

The approach we propose can be divided into the
stages

1) Partitioning the task into subtasks for assign-
ment to individual agents in the robot swarm

2) Detecting faults in swarm agents by commu-
nication between neighbors in the system

3) Taking remedial action to resolve fault in sys-
tem

PROPOSED SOLUTION

A. Fartitioning The Task

The task to be performed by the swarm is divided
into smaller non-overlapping tasks. We call each of
these tasks a function. For the case of constructing
a house, let the task be partitioned into N functions
f1, fay..., fn where N is the number of agents in
the swarm. Each of the member is assigned a
function which it must execute. The partitioning
is done by the user or by a domain specific task
planner and is not related to the overall task of fault
detection mechanism. This is a separate problem
which involves proper sub-division of tasks in a
manner such that all the required deadlines are
met and the swarm does not end up in a deadlock.

B. Detecting Faults

We divide the swarm into smaller logical neigh-
borhoods consisting of a small number of robots
which can communicate among with each other. An
example is shown in figure 1. Every robot can be a
part of more than one neighborhoods. We initialize
the neighborhoods in a static manner for simplicity
but better methods can be devised.

Robots within a neighborhood communicate pe-
riodically with each other and send a health signal
to all others in that neighborhood. Whenever one
of the robot does not receive a health signal from
its neighbor, it generates a warning message con-
taining the robot ID and the function that it was
executing and sends it to a standby robot. When the
standby robot gets two or more warning messages
containing the same robot ID, it concludes that the
robot has failed and goes on to take its place. The
substitute waits for at least two messages because
it may occur that a faulty robot is erroneously

Neighborhood

Fig. 1. An example of a logical neighborhood within the swarm

sending messages to the substitute. An example
is shown in figure 2.

Faulty

.

Faulty

O

v

Standby Standby
(a) (b)

Fig. 2. Two cases of fault are shown in the figure. Red lines
represent a warning message being transmitted and the dotted
lines represent that a message may or may not be sent. In case
(a) the standby robot takes the place of the faulty robot whereas
in case (b) the shown robot does not substitute it. The substitute
in this case will be called by a different neighborhood

To ensure that both neighbors send the warning
message to the same substitute robot, we also
define a mapping between the neighborhoods and
substitutes. This is analogous to the mapping
between main memory and cache in modern com-
puter architectures. See figure 3.

Fig. 3. Each robot is mapped to a substitute which must take
its place in case of a failure

C. Resolving Faults

Once a fault has been confirmed, the substitute
robot will receive the ID of failed robot and will know
the task that it was performing. This information
can be used by this robot to replace the failed robot.

Although we are substituting failed robots, this is
not the only possible strategy. We can define other
remedial measures that will be taken whenever
we have a failure. These remedial measures may
include replanning the entire task so that functions
can be reassigned or informing a base station.

IV. IMPLEMENTATION DETAILS
A. State Machine

The state machine has been designed in a decou-
pled manner from the main robot. This has been
done keeping in mind that a modular design will
allow for extension to other kinds of robots and
different applications without friction. The state
machine can be thought of as a black-box which
takes a single input (health) from the robot and
gives as output a single command (task ID to
perform) to the robot. The swarm can therefore be
thought of as a web linking these blackboxes which
are then linked to the robots (Figure 4). From now
onward, we refer to the blackbox+robot system as
the robot for brevity.

Fig. 4. The architecture of the swarm. It is a web of blackboxes
which communicate by broadcasting information. The dotted
lines connected to the cloud denote the blackboxes broadcasting
information. Robots are connected to these blackboxes by a
single link

The robots’ brain is a 3-level hierarchical state
machine where each level is made up of cascade
and parallel composition of simpler state machines.
Before proceeding to the actual design of the state
machine, we explain how the swarm is initialized
and how the robots communicate.

The swarm is initialized in a static manner in the
sense that the assignment of tasks, neighborhoods
and robot roles is done before the swarm can start
operating. Each robot can be though of maintaining
a list of variables which must be assigned before
starting the swarm. A robot maintains the following
variables:

1) int robot_id: Robot’s unique identification
number

2) int neighbors|[]:
neighborhood

Robots present in its

3) int init_state: Act as a substitute or not
4) int subs[]: Robots which it is allowed to
substitute
Robots communicate by broadcasting messages
at periodic intervals, each message contains several
fields. A message contains the following informa-
tion:
1) int ping_id: The ID of robot which sent this
message
2) int warn_id: ID of the failed robot
Every robot receives messages from every other
robot and decides to listen / ignore the message
based on its neighbors list. Each robot can then
act on the message based on its state. A robot can
also be present in a third state which occurs when
it is transitioning from the inactive to the active
state. The first level of the state machine is shown
in figure 5

Input: act :: pure, msg

msg.ping_id == sub
&& msg.warn_id > self id T < 15/MSg_SUb geate == vactive”

a Y

T:=0
state == "inactive"

T>Ts/msg

Fig. 5. Top level state diagram of the robot. The robot can
be in two states: inactive, which is the state of a robot which
is waiting to substitute another robot; active, the robot that is
actively working as a part of the swarm.

Here, act is a message that is generated from a
lower level in the state machine, it tells the robot to
substitute a particular robot which has failed. In
the active state, the robot must periodically broad-
cast messages and also monitor messages from its
neighbors. Therefore the state active shown in
figure 5 can be thought of as a state machine itself.
The internal design of this state is shown in figure
6

In the inactive state, the robot is required to
listen to messages about robots which it can sub-
stitute. If it detects that multiple robots say that
a particular node in the swarm is faulty then it
needs to respond. The state diagram for this state
is shown in figure 8

The state machine shown in figure 9 has a short-
coming that it may happen that multiple substitute
robots may get activated on receiving the warn sig-
nal are cause unexpected behavior. This situation
can be tackled by introducing the wait state in
top level state machine. Whenever a substitute is
going to act, it first comes to the wait state where
it broadcasts a particular kind of message with
ping_id as the ID of failed robot and warn_id as its
own ID. This message serves two purposes: first,

Input: msg
Output: ping_id, ping :: pure

Input: ping :: pure, ping_id
Output: warning msgs

msg.ping_id € neighbors / > ping
[msg.ping_id, ping]

Output: msg

T >=Tmin / msg
T:=0

ping_id

Y

Fig. 6. Internals of the active state. The antennas indicate
that the message is sent/received via the broadcast channel.
The state machine in the lower left periodically sends message
for broadcast and the cascade combination shown in the figure
is the one which reads messages from neighbors. The input
stage acts as a filter and ignores messages from non-neighbors.
The output stage counts the number of messages each neighbor
has failed to send. The yellow boxes are state machines (shown
in figure 7) which maintain this count corresponding to every
neighbor and generate a warning message as soon as a fault is
detected.

it causes the neighbors to stop issuing warnings
and second, when another robot which is trying
to substitute the failed robot listens this message,
it compares the warn_id to its robot_id, if the
warn_id is smaller, it infers that another substitute
has taken action and goes back to the inactive
state.

B. ROS Implementation and Simulation

Continuing with the methodology proposed, sim-
ulation of the quadrotor as been done using Gazebo.
The state machine for has been implemented in
form of a ROS package swarm node. The source
code for this package is available on GitHub.

The quadrotor simulation has been done using
the model hector_quadrotor. This model devel-
oped at TU Darmstadt provides a complete package
for simulation of real time algorithms on quadro-
tors. This model has bee used for simulating the
system and identifying any faults in the communi-
cation protocol.

By publishing actuation details on the topic
cmd_vel, each of the quadrotors can be made to
perform motion. The simulation so far is primitive
as factors like gravity and other natural forces
haven’t been considered. Nevertheless, the work is
sufficient to test out the communication protocol.

C. Communication

The communication between robots has been
done using XBee. A XBee is a wireless transceiver
used for bidirectional communication at moderate
speeds. The XBee is connected to an XBee Explorer
board which is used as an interface between a

Input: ping :: pure
Output: warn :: pure

true

Fig. 7. This state machine is used to generate a warning
message corresponding to a particular neighbor. It starts in the
waiting state in which it waits till it receives first message from
the neighbor. In the running state, this machine waits till Tmax
time and generates a warning message if it has not received a
message from the neighbor. It continues to generate the warn
message till it receives a message from the substitute robot. The
numbers written on transition arrows denote their priority, if
both the transitions are possible then we do them in the priority
order specified by these numbers. Transition 1 is taken first,
after which the guards are re-evaluated and then transition is
made

Input: warn :: pure, warn_id
Output: act[] :: pure

Input: msg
Output: warn_id, warn :: pure

e

msg.warn_id € subs /
[msg.warn_id, warn]

A4

T

warn

warn_id

Fig. 8. The state diagram for inactive state is a cascade of
two simpler state machines. The input stage is a filter which
discards messages which are not relevant to this robot. The
output stage listens if a warning message is present and for for
which node. The yellow blocks shown are the state machines
which act according to the warning message. The design of these
blocks is shown in figure 9

computer/microcontroller and the XBee. XBee Ex-
plorer can be used to setup and configure a P2P
communication network among two or more XBees.

We have studied the working and setup of XBees
and the same is presented in the rest of this section.

1) Peer to Peer Communication: To configure a
P2P communication network between 2 XBees it is
important to understand the three levels involved
in their networking:

Channel: This level controls the frequency band
that the XBee communicates over. Most XBees
operate on the 2.4GHz, 802.15.4 band, and the
channel further calibrates the operating frequency
within that band.

Personal Area Network ID (PAN ID): Two XBees
can communicate with each other, only if their
PAN ID is same. PAN ID is a hexadecimal number

Input: warn :: pure
Output: act :: pure

) warn /
T>Tmin/ count := count + 1

count:= 0

count:=0
T:=0

count > Cmin / act

warn /count := 1 .
! sub = warn_id

Fig. 9. This state machine counts the warning messages it
receives corresponding to a particular robot. If the count is
greater than a certain minimum number within some time
window, it considers that the node is faulty and issues an act
message which causes the robot to transition from inactive
to active state. The numbers in transition arrows denote their
priority are are used to decide which transition to take in case
multiple guards are true.

Fig. 10. Two hector quads spawned into the scene in Gazebo.
Using different namespaces any number of quadrotors with its
own controllers and sensors can be simulated.

ranging between 0x0 and Oxffff. Since there are
65536 possibilities, there are miniscule chances of
faulty/undesirable communication.

My Address and Destination Address: Each
XBee must be assigned a source address which is
called MY address and a destination address. Both
the addresses are between 0x0000 and OxFFFF. For
one XBee to be able to send data to another, it must
have the same destination address as the other
XBees source. For example, if XBee 1 has a MY
address of 0x1234, and XBee 2 has an equivalent
destination address of 0x1234, then XBee 2 can
send data to XBee 1. But if XBee 2 has a MY
address of 0x5201, and XBee 1 has a destination
address of 0x5200, then XBee 1 cannot send data to
XBee 2. In this case, only one-way communication
is enabled between the two XBees (only XBee 2 can
send data to XBee 1).

2) Broadcast Mode Communication: It is
important to take note of the fact that broadcast
mode communication using XBee requires one
Coordinator and other Router/End Devices.
The necessity of having a coordinator, does not
go hand in hand with the scalability that we
are trying to achieve, but nonetheless a XBee

uav2

fuav2/ground_truth_to_tf
Juav2/ground_truth/state
luav2/robot_state_publisher

uava/controller_spawner

gazebo it

Jugvi/motor_status
C A uav1/robot_state_publisher
/ground_truth/state
M\ yavi fcontroller_spawner

This is the ROS node graph for simulation

rostopic_13071_1476614618858
w1/ground_truth bo_tf/p

rostopic_13071_1476614618858

Fig. 11.

Fig. 12. A pair of XBees Series 2S. Source: Mark Fickett

network can be established to demonstrate the
concept. A telemetry kit would have been a better
alternative(as far as scalability of the network
is considered). The networking parameters for
broadcast mode communication are

PAN ID for the entire network 607

Dest. Address (High) for Coordinator 0x0000
Dest. Address (Low) for Coordinator 0xXFFFF
Dest. Address(High) for Router 0x0000
Dest. Address(Low) for Router 0x0000

G @ @D
o
-/
@

Fig. 13. Schematic of communication using XBees. Source:
XBee Wikispaces

Coordinator

o End Device
0 Router

After successfully establishing the network, these

XBees can share the data with other XBees in
the same network. Example: A temperature sensor
connected to the Arduino board senses the tem-
perature and the Arduino instructs the connected
XBee module to broadcast the sensor data to other
XBees in the network that are in the same neighbor-
hood. Other XBees (in the same neighborhood), on
receiving the data, pass it onto the Arduino boards
connected to them. The received sensor data (i.e.
temperature value) can be analyzed to check if it
is well within the pre-declared limits. If it is not,
the Arduino detects the anomaly and instructs the
XBee connected to it to generate a fault signal. If
more than one fault signal is received from the
same neighborhood, it implies that there has been
a failure in that neighborhood. And now the base
station can take up the task of substituting the
failed robot and the group membership lists can be
updated.

V. EXPERIMENTAL RESULTS

To peform any experiments on the state machine,
we needed to define other state machines such as
the environment and the robot which would then
be a complete system model and can be simulated.
The models we used for the environment and the
robot were very simple ones. The environment
model is shown in the figure below

Fig. 14. The model of environment used for simulation

The robot was modelled as a two state machine
which would transition from healthy to faulty state
whenever it receives a kill message from the envi-
ronment. The controller would be functional when
the robot is in healthy state. The state machine is
shown below

The state machines described in the previous
section were implemented in MATLAB environment
using Stateflow. MATLAB also provides a verifi-
cation tool which was used for the verificaiton of
properties of the swarm. The system was slightly
modified before carrying out the verification. The
modifications made involved setting the critical

Input: kill :: pure
kill /

controller

Fig. 15. Model of an agent in swarm

count for inferring failure to one. Then the tool was
used to verify the safety property for this system.

The swarm always generates an act message if a
warning is generated

VI. LESSONS LEARNT

This project required us to work in different
domains of cyberphysical systems. We used the
concepts learnt in the course for design and verifi-
cation of the state machines. We also worked with
communication hardware like XBee which required
us to gain understanding of the concepts like peer-
to-peer and broadcast communication. We also im-
plemented a simple system which could use XBees
(which have the ability to do P2P communication)
for broadcasting information to a swarm. We de-
veloped the simulation using ROS and Gazebo and
gained experience in using these systems.

VII.

We have focussed only on a simple model for the
proposed method due to the limited time frame. But
this method has a lots of scope for improvement
and extension. We enlist some of improvements
which can be made in the proposed system.

1) The method assumes that there is no more
than one fault at a time. Better neighborhoods
can be defined which can be used to infer
multiple faults.

2) The system assigns hard classes to robot as
being faulty or non-faulty, a possible exten-
sion would be to use a probabilistic frame-
work in which beliefs about robot health are
updated over time. This can help in preventing
faults and damage to robots by isolating them
before a failure may occur.

3) Each robot is assigned a single function but it

may be desirable, sometimes even necessary
that multiple robots perform a single task,

such cases can be handled by forming a hi-
erarchy in which the nodes in this system
are not individual robots but groups of robots
themselves.

4) Better methods of deciding neighborhoods can
be designed which take into account the range
of communication.

FUTURE SCOPE

REFERENCES

[1] I. Navarro and F. Matia, “An Introduction to Swarm
Robotics,” ISRN Robotics, vol. 2013, pp. 1-10, 2013. [Online].
Available: http://www.hindawi.com/journals/isrn/2013/
608164/

[2] M.-H. Lee and Y.-H. Choi, “Fault detection of wireless sensor
networks,” Computer Communications, vol. 31, no. 14,
pp. 3469-3475, sep 2008. [Online]. Available: http://
linkinghub.elsevier.com/retrieve/pii/S0140366408003587

APPENDIX: DEFINING A SWARM

A swarm is def ned using a launch fle in ROS. A sample swarm is shown below

<!--create a swarm of 4 active + 2 inactive robots—-->
<launch>
<!——-active robots of the swarm——>

<node pkg=’swarm_node’ type=’'node’ name='nodel’ output=’screen’
<param name='robot_id’ wvalue='1" />

<param name='neighbors’ value=’[2,4]" />
<param name=’state’ value=’active’ />
</node>

<node pkg=’swarm_node’ type=’'node’ name='node2’ output=’screen’
<param name='robot_id’ wvalue='2" />

<param name=’neighbors’ value=’[1,3]’ />
<param name='state’ wvalue='active’ />
</node>

<node pkg=’swarm_node’ type=’'node’ name=’'node3’ output=’screen’
<param name='robot_id’ value='3’ />

<param name='neighbors’ wvalue=’[2,4]" />
<param name='state’ value='active’ />
</node>

<node pkg=’swarm_node’ type=’'node’ name=’'node4’ output=’screen’
<param name=’robot_id’ wvalue="4' />

<param name='neighbors’ wvalue=’[1,3]" />
<param name='state’ value='active’ />
</node>
<!--substitute (inactive) robots of the swarm-->

<node pkg=’swarm_node’ type=’'node’ name='nodeb5’ output=’screen’
<param name='robot_id’ value='5" />

<param name='subs’ value='[1,4]"/>
<param name=’state’ value=’inactive’ />
</node>

<node pkg=’swarm_node’ type=’'node’ name='node6’ output=’screen’
<param name='robot_id’ value='6’ />

<param name='subs’ value=’[2,3]"/>
<param name=’state’ value='inactive’ />
</node>

</launch>

APPENDIX: STATEFLOW DESIGN OF THE STATE MACHINE

Fail

1)

(active) Taulty
6madua;t_0 ~ ‘check_1 N\
after(T_fail sec)
Ping_1
entry:
send(Ping_0);
after(T_broadcast sec)
\ / \ true J
\
A
- /
(inactive
/monitor_2 h
aften|T_safe sec) [wam_20 | wam_21 H{count = count+1}
—\1 /‘
faulty
arn_20 | wam_21] {count=1
2o K } [count>C_critical]
. s
N\
[warn_10 | wam_12] {count=1} [count>C_critical]
. A

