
VISION ALGORITHMS FOR MOBILE ROBOTICS: MINI PROJECT 1

Monocular Visual Odometry
Hao-Chih Lin, Mayank Mittal, Chen-Yen Kao

hlin@ethz.ch, mittalma@ethz.ch, chen-yen.kao@uzh.ch

Abstract—This report provides a brief overview of a visual
odometery algorithm for monocular camera. The algorithm, im-
plemented on MATLAB, relies on Harris features with keypoint
tracking between two consecutive frames and pose estimation
following a Markov model. We test our code on several publicly
available datasets.

Multimedia Link— https://youtu.be/trbBh8Rjc4s

I. INTRODUCTION

With the recent advances in robotics, a common problem,
often referred to as the localization problem, is to estimate a
robots pose. Odometry is one such method to do so. In odom-
etry, the pose of the robot is estimated incrementally relative
to the changes in its surrounding. Traditional systems used
sensors like rotary encoders to find out position by measuring
the angle rotated by the wheels shaft. However, this method
is futile for non-wheeled locomotion systems, such as legged
robots, and aerial vehicles. Additionally, rotary encoders are
erroneous as wheels tend to slip and drift which cannot be
measured from the encoders. This error is compounded when
the vehicle operates over non-smooth surfaces.

Hence, a better way to perform odometry is to rely on
visual systems like cameras, and LiDARs. Visual odometry
is considered a subpart of a bigger structure from motion
(sfm) problem in computer vision. Although it can be used
in both outdoor and indoor environments, it is considered
accurate only in feature rich scenes as opposed to a texture-
less environments

Our visual odometry (VO) pipeline can be divided into
two parts. The initialization phase, also called bootstrapping,
provides the initial set of landmarks and camera pose. The
continuous operation phase, on the other hand, processes each
subsequent frames to estimate pose and regularly triangulate
new landmarks.

II. BUILDING BLOCKS

A. Feature Detection

Features in an image are often locations which differ from
the immediate surroundings. These may be corners, edges,or
even blobs. For a naive corner detection method, we can
apply a window around each pixel and shift it to compute
Sum of Squared Difference (SSD) scores. The score would be
much larger than zero at the corner points. However, doing
so is computationally intensive. Instead we use Harris corner
detection method [2] in our implementation which is a more
efficient way to detect corners in an image.

Advisor: Prof. Dr. Davide Scaramuzza, Instructor for “Vision Algorithm
for Mobile Robotics”, ETH Zürich, WS 2018/2019.

In Harris corner detection method, the gradients of the
image I are calculated using Sobel filters. The SSD score at
a pixel (x, y) is computed by:

SSD(∆x,∆y) =
∑
x,y∈P

(I(x, y)− I(x+ ∆x, y + ∆y))2

Using Taylor expansion, we can approximate the above
equation as:

SSD(∆x,∆y) ≈
∑
x,y∈P

(Ix(x, y)∆x+ Iy(x, y)∆y)2

≈
[
∆x ∆y

]
M

[
∆x
∆y

]
where M =

[∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]
.

The Harris scores for each pixel is then calculated as R =
det(M) − κ trace(M), where κ is a parameter that needs to
be tuned. Using non-maximum suppression, we pick only the
strongest features in each block and use them as keypoints in
our pipeline.

B. Feature Tracking

Lucas-Kanade Tracking (KLT) [3] is similar to template
tracking and is used to find correspondences between key-
points in two input frames. In this, a box-sized window is
created around each keypoint in the first and second frames to
compute a descriptor. The descriptor for the keypoint in the
first frame is warped using the warp function W (x, p) where
x and p are the pixel points and the warp parameters. Then,
the SSD score is calculated between the warped descriptor and
the descriptor of second like the following formula

E =
∑
x∈T

[I(W (x, p))− T (x))]2

where E is the SSD score, T(x) is the template image and
I(W(x,p)) is the image after warped

In order to minimize the error we know that the minimization
form can be written in the following form

E =
∑
x∈T

[I(W (x, p)) +∇I ∂W
∂p

∆p− T (x)]2

To solve the minimization form, we solve for the equation
∂E/∂∆p = 0 we can get the close form solution

∆p = H−1
∑
x∈T

[∇I ∂W
∂p

]T [T (x)− I(W (x, p))]

VISION ALGORITHMS FOR MOBILE ROBOTICS: MINI PROJECT 2

where
H =

∑
x∈T

[∇I ∂W
∂p

]T [∇I ∂W
∂p

]

after we compute the ∆p we then update it into p← p+ ∆p
and repeat it until the ∆p < ε. In this VO pipeline, the Matlab
built-in function, named vision.PointTracker was chosen
for the KLT implementations.

C. Feature Matching

Feature matching comprises of efficiently searching for
likely matching candidates in two images. For feature match-
ing on Harris keypoints, descriptors are created based on the
patch intensities around the keypoints in both the images. Sum
of Squared Distances (SSD) scores are computed between each
query keypoint in one image with all the database keypoints in
the other image. The keypoint matched to the query keypoint
is the one corresponding to the minimum SSD score.

D. Perspective-3-Point (P3P)

For given 2D keypoint [u, v, 1]T in image frame and cor-
responding 3D landmark [X,Y, Z, 1]T in world frame, the
relation between these two vector is as follows:

s

uv
1

 = K[R|T]


X
Y
Z
1


where s is a scale factor for the image point, K is camera
intrinsic matrix, which is given. The goal of P3P is to
compute a camera extrinsic matrix [R|T] which satisfies the
above formulation. Based on Carnots theorem [1], using three
non-collinear 2D keypoints, the P3P will output four valid
solutions. The additional fourth keypoint can disambiguate the
solutions. In our VO pipeline, the P3P algorithm is adopting
the open-source implementation provided in [1]. Generally, the
usage of P3P will be combined with RANSAC to filter out
the outliers in the set of point correspondences.

E. Essential Matrix Formulation

For given keypoints in both frames, we have the pixel
point[u,v]. For the frame 1 we have the formula

λ1

ui1vi1
1

 = λ1p
i
1 = K1[I|0]


Xi
w

Y iw
Ziw
1


For the second frame we have another formula

λ2

ui2vi2
1

 = λ1p
i
2 = K2[R|T]


Xi
w

Y iw
Ziw
1


where K1 and K2 are the intrinsic parameter

By using the epipolar geometry we can derive the epipolar
constraint equation

pT2 Ep1 = 0

where E = [T]xR is the essential matrix. [4]
For uncalibrated cameras we can derive the fundamental
matrix F

pT2K
−T
2 EK−11 p1 = 0

where F = K−T2 [T]xRK
−1
1 p1 In order to reduce the error we

can use the normalized points instead.

p̂i =


√
2
σ 0 −

√
2
σ (µx, µy)

0
√
2
σ −

√
2
σ µy

0 0 1

 pi
where µ = mean of the points and σ is the mean standard
deviation.
Now we have the equation

p̂T2 F p̂1 = 0

To solve the essential matrix F we can use the SVD method.

F = UΣV T

and to make sure that the determine on the essential matrix [4]
to be zero we let the last element in the matrix Σ be zero, then
we can recover the essential matrix E, then we decompose the
essential matrix by using SVD and get the R and T

E = UΣV T

where

T̂ = U

 0 ∓1 0
±1 0 0
0 0 0

 ΣV T

R̂ = U

 0 ∓1 0
±1 0 0
0 0 0

 V T
and the final R and T are

T = K2T̂

R = K2R̂K
−1
1

there are four different R and T that are possible, and we pick
the one with all the points or most of the points are in front
of both cameras.

F. RANdom SAmple Consensus (RANSAC)

RANSAC [5] algorithm stands for Random Sample Con-
sensus algorithm which can help us remove outliers in a very
efficient way. First of all, we estimate the fraction of inliers
in the dataset(w) and also set the probability of success(p).
Since we are using the 8-point algorithm applied to Structure
from Motion, we extract 8 points every time. With fraction of
inliers(w), probability of success(p), and 8 points, we have the
number of iteration that we have to run.

k =
log(1− p)
log(1− ws)

During each iteration and for the eight points we extracted, we
compute the essential matrix and find out the R and T. With
our guess of R and T we can do the triangulation of all the
points and reproject them and compute the reprojection error,

VISION ALGORITHMS FOR MOBILE ROBOTICS: MINI PROJECT 3

and if the error is smaller than a threshold we consider it as
a inlier, after run through all the iterations we can select the
best R and T with the most inliers. We then takes these inliers
to do the further step to compute the triangulation.

G. Triangulation

In the linear triangulation [6] we use the keypoints and the R
and T to compute the landmark, but here we have to consider
the baseline, if the baseline is too small there are large depth
error, but if the baseline is too large, the minimum measurable
distance increase and it is difficult to search problem for close
objects. Here we use 2 keyframes as our baseline. For the first
frame we have the equation

λ1

ui1vi1
1

 = K1[I|0]


Xi
w

Y iw
Ziw
1

 = λ1p1 = M1P

For the second frame we have another equation

λ2

ui2vi2
1

 = K2[R|T]


Xi
w

Y iw
Ziw
1

 = λ2p2 = M2P

we then can derive these two equation into the form

p1 ×M1 · P = [p1]x · P = 0

p2 ×M2 · P = [p2]x · P = 0

we than can solve for the P by Matlab built-in SVD function,
and take the last column of V to get the result.

III. VISUAL ODEMETRY PIPLELINE

A. Bootstrapping

In the bootstrapping part, we have the following works to
do. First of all, we find the keypoints in our input frames,
and here we adopt the Harris corner detection method. Sub-
sequently, we track the keypoints that we extracted from the
first frames to the keypoints we extracted from the second
frame by Lucas-Kanade tracking method. With the tracked
keypoints, we can save the corresponding ones and remove
the irrelevant ones. With the remaining tracked keypoints we
can find out the corresponding essential matrix and compute
the rotation matrix (R) and the translation (T). However, we
are not sure about that all the remain keypoints are inliers,
so we take the RANSAC approach to find the best R and T
that contains the most inliers. With all the inliers in hand, we
compute the transformation matrix and use these parameters
and the keypoints to triangulate our 3D landmarks.

B. Continuous Operation

In this part, the data flow of continuous processing follows
the assumptions of Markov property, which means that for
each time step(i), the updating state Si and camera pose T iWC

only depends on previous frame Ii−1, previous state Si−1 and
current frame Ii as follows:

[Si, T iWC] = processFrame(Ii, Ii−1, Si−1)

Fig. 1. Keypoints in the current frame (KITTI dataset). The green and red
points are tracked keypoints pair in the current and previous frames.

Fig. 2. Initialized landmarks and pose after bootstrapping (KITTI dataset)

The state S in this phase is defined as Si = (P i, Xi), where
P i is denoted as keypoints in i-th frame {pik}, k ∈ [1, K],
K being the keypoints count. The 3D landmarks are denoted
with Xi = {x(p)∀p ∈ P i}. The state S will be augmented in
the next Triangulating phase.

To estimate the camera pose T iWC , the processFrame()
function could be divided into three procedures:

1) Associating keypoints to existing landmarks: Given key-
points S.P i−1 at previous time with previous frame Ii−1, the
corresponding keypoints S.P i at current time can be tracked
by KLT, mentioned in II.B, as feeding the current frame
Ii. After applying KLT tracker, the tracked corresponded
3D landmarks will be saved into S.Xi. The column size of
S.Xi should be the same as S.P i. With these keypoints-
to-landmarks associations, the camera pose T iWC can be
estimated by P3P in the next procedure.

2) Estimating the current pose: With keypoints S.P i, asso-
ciated 3D landmarks S.Xi and camera intrinsic matrix K, the
camera pose from camera frame to world frame T iCW could
be computed by P3P algorithms mentioned in II.D. Because
of KLT tracking errors, such as image blur, moving objects in
the scene and also the inherited accumulated position error of
S.Xi, the P3P needs to be combined with RANSAC to filter

VISION ALGORITHMS FOR MOBILE ROBOTICS: MINI PROJECT 4

out the outliers. The camera pose from world frame to camera
frame T iWC could be obtained by applying the inverse of T iCW
as follows:

T iWC = (T iCW)−1 = [RTCW | −RTCWTCW]

3) Refining the pose: Theoretically, the outputs of P3P is
enough for continuous operation, however, the P3P algorithm
only takes three pairs of keypoints-to-landmarks associations
among inliers set after RANSAC step for pose estimation.
The accuracy of estimated pose will be directly influenced by
inherited errors of randomly selected three pairs of associa-
tions. Therefore, to obtain more robust and better accurate of
pose estimates, all association pairs among inliers set should
be used for refine the estimated pose. After some practical
experiments, instead of using DLT algorithm, a nonlinear least
square method with minimizing the reprojection error between
S.P i and S.Xi is adopt to refine the pose estimated by P3P .

Before applying the refinement, the RANSAC outliers of
both S.P i and S.Xi have to be removed from the array.
Then, computing the reprojected keypoints from S.Xi with
camera intrinsic matrix K and T iCW from P3P outputs. The
refined pose T iCW

′ would be found by taking the argument of
minimizing the sum of errors between original keypoints and
reporojected keypoints with respect to given P3P output pose
T iCW as follows:

T iCW
′ = arg min

T i
CW

′

∑
k

[pik − (K · T iCW ′ · xik)]2

where pik is k-th of S.P i, xik is k-th of S.Xi and k ∈ [1,
K], K being the keypoints count. Without the refinement, the
accumulated error caused by inaccurate camera pose estimates
and positions of new adding landmarks will diverge so fast that
the number of inlier inside P3P with RANSAC will be lower
than given threshold, the continuous operation will be stuck.

C. Triangulating new landmarks

The initial set of landmarks obtained form bootstrapping
may not be visible to the camera after the camera has moved
far enough. Thus, new landmarks need to be triangulated at
each frame for pose estimation through continuous operation.
In order to preserve the Markovian property of our pipeline,
we follow the procedure as described below:

1) Adding new landmarks: Using the candidate points from
the previous state St−1.C, we apply KLT tracking to find
matches in the current frame. We set the matched keypoints
pair from St−1.C and the current frame into St.C and
St.F respectively. Similar to what is done bootstrapping, we
perform triangulation on these matched keypoints and check
that the candidate landmark should lie in-front of the current
camera frame. We then calculate the bearing angle between
landmark and the two frames in which it has been observed.
If the angle is above a threshold, we add the candidate keypoint
and its corresponding landmark to the existing lists St.P and
St.X respectively, and remove the associated entries from
St.C, St.F and St.T .

2) Adding new candidate keypoints: As candidate keypoints
may decrease with time, we need to replenish their count as
well. To do so, we detect new Harris corners in the current
frame and add only those keypoints which are not matched
with already existing keypoints in St.C and St.P . To further
prevent redundancy, we check that the new keypoint should
not be within a particular radius to the keypoints in St.C and
St.P . The filtered keypoints are then appended to St.C and
the current camera pose is added St.T marking the camera
pose when the feature points are first observed.

3) Bootstrapping after regular intervals: To counter the
scale drift issue in monocular odometry, we perform boot-
strapping again after regular intervals and discard the previous
state. The landmarks that are obtained from the bootstrapping
stage are then transformed back into the global frame using the
camera pose. This prevents the re-initialization of the global
frame. In our experiments, we found that this improved our
result a lot, and thus decided to keep it as a part of our
implementation.

IV. USER INTERFACE

The User Interface as shown in Figure 3 plots the status
of our Markovian state. We show the tracked keypoints in
the frame St.P in green and the candidate keypoints St.C in
red. Besides that, we plot the number of landmarks observed
in the last 20 frames to keep track that sufficient number of
landmarks are being added at each instant. Along with that we
plot the entire global trajectory and a local trajectory of the
latest 20 frames.

Fig. 3. MATLAB Figure showing the trajectory on KITTI Sequence 00

V. RESULTS

In all the three datasets, we carefully tuned our parameters.
The odometry estimated using our VO pipleline for the three
publicly available datasets– KITTI Dataset, Malaga Urban
Dataset, and Parking Dataset– are shown in Figures 4, 5 and 6
respectively.

VI. REMARKS

The first version of our VO pipeline only implemented
the P3P -RANSAC without pose refinements (the method
mentioned in III.B.3), the performance was highly unstable
and it was hard to reproduce the similar result over several

VISION ALGORITHMS FOR MOBILE ROBOTICS: MINI PROJECT 5

Fig. 4. Estimated Odometry in KITTI Sequence 00

Fig. 5. Estimated Odometry in Malaga Urban Sequence 07

Fig. 6. Estimated Odometry in Parking Dataset

testings even with the same parameters. Sometimes the outputs
trajectory could successfully pass the first corner, but most

of time it can not draw a simple straight line as the camera
moving forward. To tackle this issue, we have tested dozens
of parameters sets, rewritten or exchanged the implemen-
tations of each sub-functions, but still could not improve
the performance. In order to address the exact reasons, we
tried to reviewed all data inside state cell Si at each time
step i in paused debugging mode at run time. Finally, we
figured out that camera pose T iWC estimated by P3P was not
stable, in other words, under same image dataset with same
parameters, the pose output at specific frame i at testing(k)
could somehow be significant different to testing(k+ 1). This
phenomenon make us to notice the main issue of P3P -
RANSAC is to randomly select three pairs of keypoint-to-
landmarks association from the inlier set. The error of pose
estimate did not be minimized at each continuous processing
step, in addition, as stated in III.B, our VO pipeline follows
the assumptions of Markov property, which means that the
error of pose estimation will be accumulated continuously.
These accumulated error will also influence the accuracy of
position for the new adding landmarks, which will be taken as
inputs of P3P in the next iteration. In the end, when P3P -
RANSAC can not find enough inlier properly under given
thresholds, the pose outputs will stuck.

There are several potential methods to solve this problem,
one way is to refine the estimated pose by all associations pairs
in inlier set, like the method presented in III.B.3 to minimize
reprojected errors. After applying this mechanism, our VO
system is able to reproduce whole trajectory from image
dataset (Figure 4). However, the refinements described in this
paper only minimize the pose in consecutive frames, means
that the error is still slowly accumulating over frames. This
limitations cause the performance of our VO pipeline is quite
stable in short period of time and independence of parameters
tuning, but quite sensitive for long time operation which needs
parameters fine tuning depending on specified image dataset,
such as how many of new keypoints will be detected in the
new coming frame, what is the minimization or maximization
thresholds for new adding landmarks (e.g. in forward motion,
the max number should be low. But in turning motion, it
should be high, otherwise, most of new landmarks will be
discarded and there will not be enough landmarks for P3P in
the next iteration.), etc. To overcome this challenge, the typical
solutions are adding global Pose Graph Optimization or sliding
window based Bundle Adjustment (BA), these algorithms
could be one side of our future works.

REFERENCES

[1] Kneip, Laurent, Davide Scaramuzza, and Roland Siegwart. ”A novel
parametrization of the perspective-three-point problem for a direct com-
putation of absolute camera position and orientation.”, 2011

[2] Davide Scaramuzza ”Lecture Note 05 Point Feature Detection and
Matching” pp. 37–64, 18.10.2018.

[3] Davide Scaramuzza ”Lecture Note 11 Tracking” pp. 49–69, 28.11.2018.
[4] Davide Scaramuzza ”Lecture Note 08 Multiple View Geometry 2” pp. 16–

39, 09.11.2018.
[5] Davide Scaramuzza ”Lecture Note 08 Multiple View Geometry 2” pp. 40–

71, 09.11.2018.
[6] Davide Scaramuzza ”Lecture Note 07 Multiple View Geometry 1” pp. 18–

30, 07.11.2018.

