
RIAI 2018 COURSE PROJECT 1

Verification of Feedforward Neural Networks
Manuel Breitenstein, Mayank Mittal

Abstract—We propose an efficient method to verify robustness
of deep ReLU-based classifiers against norm-bounded adversarial
perturbations. Our verifier combines both interval domain and
linear programming to find the right tradeoff between precision
and speed. We assign a score to each neuron in a hidden layer
depending on the tightness of its inputs and the importance of its
output on the hidden layer after it. Depending on this score, we
decide whether we need to obtain a precise bound using convex
relaxation or we can use a more imprecise bound through interval
domain analysis. We check our method on the provided dataset
for different L∞ norm-based perturbations.

I. INTRODUCTION

Adversarial examples refer to data points that are not
“visually” distinguishable from the examples a neural network
has been trained on but are classified incorrectly. A network is
said to be locally robust to this if it returns the correct output
on all inputs similar to the inputs in the training set.

We consider a k layer feedforward ReLU-based neural
network NN , fθ : R|x| → R|y|, denoted as follows:

ẑi+1 =Wizi + bi, i = {1, 2, ..., k − 1}
zi = ReLU(ẑi), i = {2, 3, ..., k − 1}
z1 = x

fθ(x) = ẑk.

For the MNIST dataset, |x| = 784 and |y| = 10. For some
of the networks, the output is taken from a ReLU activation,
i.e. fθ(x) = ReLU(ẑk). However, this does not affect the
robustness property we want to verify:

φ |=
∧

i6=label

UB(NN [i]) < LB(NN [label])

where LB(.) denotes the lower bound of the interval and UB(.)
denotes the upper bound.

II. VERIFICATION ALGORITHM

We first compute the bounds using interval analysis for
ẑi, i = {2, ..., k}. It is trivial to say that for small networks
and small perturbations this may be sufficient to prove property
φ. However, for larger networks, we follow the algorithm as
summarized in Algorithm 1. The algorithm inputs a neural
network, the perturbed image bounds and a score threshold
which decides when to apply linear programming.

We use BB[i] to denote the bound obtained using in-
terval domain analysis for neurons in the layer ẑi. The
callLinear(model, i, j) function finds the bounds for the jth

neuron in the layer ẑi using linear programming. Moreover,
B(.) denotes bounds for a variable.

Advisor: Prof. Dr. Martin Vechev, Instructor for Reliable and Interpretable
Artificial Intelligence, ETH Zürich, FS 2018/19.

Algorithm 1 Prove robustness of neural network NN
Input: NN , B(z1), threshold
Output: boolean value which is true if verified

1: procedure PERFORMLINEARLAYERWISE
2: BB[:], f lag ← box analysis for ẑi, i = {2, .., k};
3: if flag = true then return true;
4: model← linear solver with simplex method;
5: model← add constraints for ẑ and z using BB[:];
6: for i = 2, .., k do
7: if i = 2 then B(ẑ2)← BB[2]
8: else if i = k then
9: B(ẑk)← callLinear(model, k, :);

10: else
11: B(ẑi)← box analysis for ẑi using B(ẑi−1);
12: inactive← indices where B(ẑi) ≤ 0;
13: scores← score all neurons not in inactive;
14: use LP ← scores < threshold;
15: m← number of neurons in layer i;
16: for j = 1, .., m do
17: if use LP [j] = true then
18: B(ẑi[j])← callLinear(model, i, j);
19: model← update constraint zi = ReLU(ẑi);
20: φ← verify property using B(ẑk);
21: return φ;

III. SCORING HEURISTICS FOR NEURONS

For inactive neurons, i.e. B(ẑi) ≤ 0, the ReLU output
is always 0 so we do not need to improve their bounds
using linear programming. Hence, only the active neurons
are considered. Our proposed score represents the influence
of each neuron on the future layers. The influence score of a
neuron scorej is given by a product of tightness score tj and
weight’s score nj . Mathematically, for a neuron j in layer i,
the scores are calculated as follows:

tj = UB(B(ẑi[j]))− LB(B(ẑi[j]))

nj = ||Wi+1[:, j]||1
scorej = tj · nj ,

where B(ẑi[j]) are the bounds computed using interval domain
analysis and and Wi[:, j] denotes the column j of the weight
matrix in the affine layer i + 1. We observe that filtering out
inactive neurons is sufficient for smaller networks, whereas
for the large ones we rely on the scoring threshold.

REFERENCES

[1] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2010.
http://www.gurobi.com

[2] G. Singh, M. Püschel, M. Vechev. Making Numerical Program Analysis
Fast. ACM PLDI, 2015. http://elina.ethz.ch/

