
Multi-Camera DeepTAM

Rohit Suri
ETH Zürich

suriro@ethz.ch

Mayank Mittal
ETH Zürich

mittalma@ethz.ch

Fadhil Ginting
ETH Zürich

gintigfa@ethz.ch

Parker Ewen
ETH Zürich

ewenpa@ethz.ch

Abstract

Visual Odometry methods based on classical 3D geom-
etry have been around for years, using either indirect fea-
ture matching or direct visual error minimization. Lately,
learning-based methods that combine both matching and
geometry estimation in a single network have achieved im-
pressive results. One such method is DeepTAM [23].

Further, it has been shown that classical methods benefit
from the extended field of view provided by using multiple
cameras. However, these setups have been ignored by cur-
rent learning-based methods. In this work, we extend the ex-
isting DeepTAM pipeline to leverage a multi-camera setup
with known geometry. We demonstrate the generalizability
of DeepTAM to other monocular setups and highlight the
scenarios in which it performs poorly. We show the efficacy
of our proposed multi-camera VO pipeline to receive better
pose estimates using experiments based on simulation.

1. Introduction
In robotics, accurate pose estimation is an essential pre-

requisite for a variety of tasks such as obstacle detection,
mapping, and motion planning. Although GPS provides
a straight-forward solution for outdoor environments, it is
highly unreliable in indoor scenarios. Alternatively, the
pose of the robot can be estimated incrementally relative to
the changes in the robot’s surrounding. This is referred to as
odometry. Traditional systems used sensors such as rotary
encoders to evaluate the position by measuring the angle
rotated by the wheels shaft. However, this method is erro-
neous as wheels tend to slip, and is futile for non-wheeled
locomotion systems, such as legged robots, and aerial ve-
hicles. Hence, there has been an increased interest to per-
form odometry using visual systems [1] such as cameras.
These sensors are cheaper and provide a lot more infor-
mation about the environment compared to inertial sensors
such as accelerometers and gyroscopes.

Classical approaches for Visual Odometry (VO) can be
broadly categorized into feature-based methods and direct
methods. Feature-based methods (such as [12, 8]) typi-

Figure 1: A multi-camera Visual Odometry (VO) pipeline.
DeepTAM, a learning-based VO approach, is used for esti-
mating pose of each camera. These poses are then fused to
acquire a more accurate estimate.

cally involve feature extraction and tracking, followed by
minimization of a reprojection error between detected land-
marks. Although these approaches work well even when
there are large frame-to-frame motions, their performances
are adversely affected by outliers during feature matching.
On the other hand, direct methods (such as [4, 14]) min-
imize the photometric error between the images from the
sensor and thus exploit all the information available. How-
ever, they are known to work well only when the frame-to-
frame motion is small. Recent approaches (such as [5, 3])
have combined the two classical methods to perform more
efficient pose estimation. With the advent of deep learn-
ing, learning-based methods (such as [23, 22]) have been
also gained attention to perform visual odometry. These
algorithms often combine both matching and geometry es-
timation into a single network and have shown performance
comparable to the classical approaches. However, a data-
driven approach may overfit on the training data and may
generalize poorly to other sensor setups.

For most practical purposes, relying on a single camera
for VO may result in poor motion estimate due to trans-
lational and rotational ambiguities [13]. These ambigui-
ties can be alleviated by using a multi-camera system. In

1



(a) Tracking model (b) Coarse-to-fine pose refinement model

Figure 2: DeepTAM architecture for pose estimation. (Images taken from [23])

the past, several multi-camera VO-pipelines have been pro-
posed in conjunction to classical approaches. These sys-
tems leverage the extended field-of-view from the multiple
cameras to get more robust pose estimates. However, to our
knowledge, no such work exists which extends a learning-
based approach for VO using a multi-camera system. In this
work, we propose a pipeline built on-top of DeepTAM [23]
to do so. We make the following contributions:

• We evaluate the generalizability of DeepTAM on other
monocular setups, and highlight the scenarios where it
performs poorly.

• We show how a multi-camera system with known ge-
ometry can be used to estimate better poses using
DeepTAM.

The remainder of the paper will discuss the related work
on multi-camera VO systems in Sec. 2, followed by a brief
background over DeepTAM in Sec. 3. Our technical ap-
proach is presented in Sec. 4. We describe our dataset col-
lection and results in Sec. 5. In Sec. 6, we discuss our
observations on learning-based VO approaches and future
extension of our work. The work distribution and code con-
tribution are mentioned in Sec. 7 and Sec. 8 respectively.

2. Related Work
In the last decade, several visual odometry pipelines have

been proposed for monocular and multiple camera systems.
In this section, we focus on literature related to our work on
multi-camera pose estimation.

Many multi-camera pose estimation frameworks con-
sider a networks of cameras as a single generalized camera.
Pless et al. [15] propose an approach in which each pixel
from an image represents a sampling of a region of space in
a scene instead of light rays which interact with the sensor
from a particular location. This is done by describing the
images in terms of light rays and origin points which facil-
itates decentralization of the camera model. The benefit of
this method is that the generalized model can be computed
even if the centers of projection for each individual cam-
era ate at different points. On the other hand, Composeco
et al. [2] jointly estimate all camera poses using general-
ized perspective n-point (gPnP). This uses the generalized

camera model in place of the individual cameras at a known
configuration. The generalized camera model helps in com-
puting minimal solvers which approximate the pose of each
camera in the model with the help of RANSAC.

Likewise, the method presented in [9] finds minimal
solvers as well. However, it treats each camera individu-
ally by using classical camera models instead of the gen-
eralized camera model. Pose estimation includes two steps;
first, depth information of points is calculated and then rigid
transformations are computed. As shown [20], it is also pos-
sible to perform a large-scale structure-from-motion (SfM)
by using a distributed, multi-camera model. Both these ap-
proaches offer more efficient varieties of widely used SfM
frameworks. However, they only focus on individual cam-
eras instead of treating them as a combined system.

Visual localization for autonomous driving involves mul-
tiple cameras and thus requires fusing the pose estimates
between the mounted cameras. By using nodes to represent
the estimated poses for each camera and inter-node edge
constraints, along with the constraints for the 2D-plane mo-
tion, the resulting factor graph can be optimized to obtain
better pose estimates for the vehicle [6]. Other optimization
methodologies that account for pose drift and aid in pose
fusion without graphs are also possible (such as [10]).

3. Background
DeepTAM [23] is a deep learning method for keyframe-

based dense tracking and mapping. The algorithm is moti-
vated from an equivalent classical approach DTAM [14].
The tracking architecture performs incremental frame to
keyframe tracking. This helps in reducing the dataset bias
problem and helps the algorithm to generalize to other se-
tups. The mapping architecture, on the other hand, com-
bines depth measurements with image-based priors and
yields accurate depth maps. Both the tracking and map-
ping portions of DeepTAM are implemented using distinct
networks and can be trained separately. For our work, we
only focus on the tracking part.

DeepTAM employs several schemes to infer accurate
poses from the network. The pose estimation step can be
thought of as a two-view relative pose estimation. Each im-
age is compared to the last keyframe in order to determine
the pose difference. As the new image goes further away



Figure 3: The world, rig (base), and camera coordinate sys-
tems along with rigid transformations θt between them. (Im-
age taken from [17])

from the keyframe, the relative pose estimation becomes
less accurate. Thus a new keyframe is set when a certain
translation or rotation threshold is crossed.

The encoder-decoder network for tracking takes the last
keyframe RGB image and depthmap, along with the current
RGB image as inputs. To improve the accuracy, the network
generates multiple pose hypothesis and provides the final
predicted 6-DOF pose as an average of these hypothesis, as
shown in Fig. 2(a). During training, they add optical flow
prediction as an auxillary task for the network in order to
simulate the training of motion features.

In order to deal with large camera motions, they refine
the pose incrementally by using three tracking networks
with distinct parameters but similar architectures, as shown
in Fig. 2(b).

Ideally, DeepTAM only requires the RGB images as in-
puts since the mapping part takes care of generating the
depthmap for each keyframe. However, in order to mitigate
the need of the mapping part, we provide the RGB image
as well as the corresponding groundtruth depth image as in-
puts to the tracking network.

4. Technical Approach
Consider a setup with N -cameras in a known configu-

ration. The translation component of the rigid body trans-
formation θt at instant t is parameterized using cartesian
coordinates t, while the rotation component is represented
in angle-axis coordinates r. As shown in Fig. 3, we use
the following coordinate systems: world (w), base frame
of sensor rig (b), and the camera frame ci corresponding
to the ith camera in the rig. The rigid-body transformation
from the base to camera i is denoted by c

bθi and is known
before-hand.

DeepTAM predicts the pose for each camera in the world
frame as denoted c

wθ̂t,i. We transform all these estimated
poses to the base frame before performing the pose fusion,
i.e. for each camera i ∈ 1, ..., N :

b
wθ̂t,i =

c
w θ̂t,i ⊗ b

cθi (1)

where ⊗ denotes the composition of rigid transformation.
An outline of our pipeline is shown in Fig. 1.

4.1. Baseline approach

As a baseline approach, we perform simple pose averag-
ing where the pose estimates from each camera are weighed
equally [21]. Parallels can be drawn between this method
and the single camera DeepTAM step where multiple pose
hypotheses are generated. The fused pose estimate bwθ̂t for
the base in the world frame can be expressed as:

b
w t̂t =

1

N

N∑
i=1

b
w t̂t,i, (2)

b
wr̂t =

1

N

N∑
i=1

b
wr̂t,i. (3)

Prediction accuracy can be distilled into several factors
which depend upon the initial predictions. Firstly, if all the
pose estimates were centered about a point which was not
the ground truth pose, the average would not be the closer to
the actual pose (and may in fact be further from the ground
truth than one of the camera predictions). Thus, to see im-
provements in accuracy we need the probability distribution
of the estimates to be centered about the ground truth pose.

It may be the case that some cameras have rich scene in-
formation while others on the rig see homogeneous regions
like a wall. The pose estimate for the camera which sees
many features will be more accurate than the one which
sees the homogeneous region. Weighing both these esti-
mates equally would not non-optimal.

Ideally we would have information on which pose esti-
mate is closest to the ground truth, but since this information
is not known, and is indeed the problem trying to be solved,
we must try to find a way of using information given to us
to try and discern which cameras are likely to give the best
estimates.

4.2. Weighted Averaging using scene richness

Equal weighting may not produce optimal results for the
reasons specified above. However, by using the information
provided by the cameras we present a weighting scheme for
pose fusion in this section. The aspects we consider are:

• richness of information in RGB image

• homogeneity in the depthmaps



4.2.1 Features density for scene richness

During our experiments, we noticed that DeepTAM per-
formed better in scenes with lots of clutter. To capture this
information richness, we apply weights to the pose esti-
mates based on the relative number of SIFT features [11]
detected in each camera’s image. Let fi denote the number
of SIFT features detected in the image from camera i, then
the weight provided to current pose estimate for the camera
is given by: wsi =

fi∑N
i=1 fi

4.2.2 Homogeneity of Depthmaps

In a similar fashion, when homogeneous depth images are
encountered (for instance: a camera facing a wall) lesser
information is present in the scene and may yield poor
tracking results. In order to quantify this, we calculate
the standard deviation of the depth information present in
the depthmap. Let σi denote the standard deviation for the
depth map from camera i, then the weight given to the cor-
responding pose is wdi = σi∑N

i=1 σi
.

However, the homogeneous depth images may not solely
capture the complete information of the scene (for instance:
if a wall contains patterns, then tracking may still work
since RGB information is rich). Hence, we take a weighted
sum of the weights calculated above. If cs and cd denote the
weights given to the weights from RGB and depth informa-
tion respectively, such that cs+ cd = 1, then the fused pose
b
wθ̂t is:

b
w t̂t =

1

N

N∑
i=1

(csw
s
i + cdw

d
i )
b
w t̂t,i, (4)

b
wr̂t =

1

N

N∑
i=1

(csw
s
i + cdw

d
i )
b
wr̂t,i. (5)

4.3. Averaging using outlier rejection

In this method, we select the estimates of the base frame
which agree the most with each other. In order to reject
what are considered outlier poses, the average and standard
deviations for all the poses are first computed. The accept-
ability of each pose is evaluated based on the sigma-based
rule, i.e. the poses that outside a certain factor of the stan-
dard deviation (typically 1.4) from the mean pose discarded.
The inlier poses are then fused using the averaging approach
used in the baseline.

5. Results
In this section, we first describe the various datasets col-

lected by us. We then discuss the generalizability of Deep-
TAM in various monocular setups and compare the accu-
racy of various multi-camera pose fusion methods that were
presented in Sec. 4.

(a) SunCG (b) AirSim

Figure 4: Sythetic Datasets

(a) ZED Mini (b) CVG Indoor (c) CVG Outdoor

Figure 5: Real-World Datasets

5.1. Dataset Collection

For a thorough evaluation, we collect datasets from real-
world using various hardware setups as well as from high-
fidelity simulation environments. Sample images from the
our collected simulation and real-world datasets are shown
in Fig. 4 and Fig. 5 respectively.

5.1.1 Synthetic Datasets

A variety of simulators have emerged in the last few years
which provide realistic RGB images. To this end, we re-
sort to the following well-known simulators for indoor and
outdoor environments simulations:

SunCG Dataset: Te SUNCG dataset [19] provides a va-
riety of 3D models of furnished houses. The MINOS simu-
lation framework [16] allows importing of these models and
setting up multiple cameras. Using the simulator we setup
a planar camera rig comprising of three cameras oriented at
−26.5o, 0o, and 26.5o with respect to the base frame.

AirSim Dataset: AirSim [18] is a drone-simulator built
on top of Unreal Engine. Using a sub-urban environment
in the simulator, we capture poses of the drone and images
from a stereo camera mounted on the drone during its flight.

5.1.2 Real-World Datasets

Due to resource limitations, we could not directly acquire
accurate groundtruth for a variety of real-world data that we
collected. Instead we relied on using recognizable patterns
such as checkerboard and fudicial markers for calculating
the poses of the cameras.



ZED Mini Dataset: ZED Mini from StereoLabs pro-
vides synchronized RGB images and dense depthmaps. We
collect dataset from this stereo camera in an indoor envi-
ronment with a scene structure similar to the TUM RGBD
datasets. We use a checkerboard placed on the scene to ex-
tract groundtruth pose of the camera.

CVG Stereo Cameras Rig Datasets: For more realistic
multi-camera system, we used the camera rig provided by
the CVG lab. The rig has five stereo cameras in a pentag-
onal configuration. Each stereo pair comprises of an RGB
camera and high-dynamic-range (HDR) grayscale camera.
The rig uses an FPGA to provide synced images from the
ten cameras along with the disparity image computed for
each stereo pair. However, from our experiments, we found
that these disparity images were too noisy to get reasonable
results from DeepTAM. Instead we generated our own dis-
parity images. We first perform adaptive equalization of the
images received from each stereo pair to deal with the HDR
of the grayscale images. We then compute the dispairty by
stereo semi-global block-matching [7] and denoise it using
a median filter. The scenes we captured using the camera
rig includes indoor as well as outdoor scenes such as clut-
tered desks, inside student offices, and outdoor courtyards.
For the dataset used in the results shown in this paper, we
get the groundtruth poses using a Vicon system.

5.2. Generalizability of DeepTAM

Learning-based approaches are susceptible to over-
fitting on the training data. In order to test the generaliz-
ability of DeepTAM, we perform a qualitative comparison
of the trajectories obtained using the DeepTAM tracking ar-
chitecture and the groundtruth poses.

(a) Results on AirSim (b) Results on ZED Mini

Figure 6: Qualitative comparisons of the trajectories from
DeepTAM (in blue) and the groundtruth (in purple)

AirSim Dataset: In the AirSim dataset, we find that
DeepTAM performs poorly. As seen in Fig. 6(a), DeepTAM
predicts the trajectory shape correctly. However, it suffers
severely from a scaling issue. After investigating the Deep-
TAM source code further, we arrived at the conclusion that

DeepTAM does not perform well in outdoor environments.
The reason of this limitation might be because DeepTAM is
trained using indoor datasets (SUN3D and SUNCG) which
have a lower values of depth images (upto 5 meters). On the
other hand, in the AirSim simulation the depth values can
go up to 20 meters. Further if we perform depth clipping,
the DeepTAM works worse due to missing depth values in
the input depthmaps.

ZED Mini Dataset: Experiment with ZED Mini in the
indoor dataset shows that DeepTAM manages to generalize
well, as can be seen from Fig. 6(b). However, it needs to be
noted that the depthmaps provided to the tracker in this case
were dense and the scene is indoor.

CVG Stereo Cameras Rig Datasets: During our ini-
tial experiments with the CVG camera rig, we found that
the tracking prediction of DeepTAM was poor due to the
noisy disparity maps that were generated using the FPGA.
The scaling of the estimated poses were poor with respect
to the groundtruth. Further when using other cameras in
the rig, the retrieved poses were worse. However, when
we switched to using the depthmaps we genrate, the results
were better, as shown in Fig. 7. However, compared to the
depthmaps from ZED Mini, our computed depthmap was
not at par since it had several missing values and were not
accurate. On the basis of this finding along with the results
from AirSim, we deduce that rich and accurate depthmaps
lie at the core of the tracking part in DeepTAM.

Figure 7: Qualitative comparisons of the trajectories
from DeepTAM on the CVG camera rig when using the
depthmaps from the FPGA (bottom left) and the refined
depthmaps generated by us (bottom right).



(a) Results using simple averaging (as
baseline)

(b) Results using scene-richness based
averaging

(c) Results using outlier-rejection
based averaging

Figure 8: Qualitative comparisons of the trajectories from DeepTAM using the SUNCG dataset with three cameras in the
simulated sensor rig. The groundtruth is plotted in black while the fused pose in shown in green. The dotted lines (in red,
cyan and yellow) are the estimated pose of the base from individual camera (1, 2, and 3 respectively) pose estimates.

Name ATEt RMSE (in m)
Camera 1 0.5629
Camera 2 0.3188
Camera 3 0.0975
Baseline 0.2084

Scene Richness 0.2207
Outlier-Rejection 0.05582

Table 1: Quantitative comparisons of the trajectories from
DeepTAM using the SUNCG dataset with three cameras in
the simulated sensor rig. We use absolute trajectory error
(ATE) as a metric to compare the performance.

5.3. Pose Fusion Results

With the SunCG dataset, we observed that DeepTAM
was working well in the monocular case. This is rather ex-
pected since DeepTAM tracking network is trained from a
mix of sequences from Sun3D and SunCG. We thus use the
data collected from the three-camera-simulated-rig in MI-
NOS to evaluate our pose fusion approaches. Fig. 8 shows a
qualitative comparison of the three pose fusion approaches
that we proposed. In Table 1, we show the quantitative eval-
uation of the approaches as well as the accuracy of the pre-
dicted poses of each camera using DeepTAM. We observe
that pose fusion by removing the outliers performs better
than the other two approaches.

6. Discussion

Although learning-based approaches are prone to over-
fitting, DeepTAM seems to generalize well to other datasets
that we test on. It works well even when the camera mo-
tion is large. However, it performs poorly in textureless
scenes, when using noisy depthmaps, or for fast camera
motions. Leveraging the redundancy from a multi-cameras
setup helps improving the tracking accuracy in such cases.
Since DeepTAM was not trained on outdoor scenes, it per-
forms poorly on AirSim. However, from our experiments
we deduce that the issue in this case is primarily scaling.

7. Work Distribution

Mayank took the responsibility for rewriting portions of
the original DeepTAM source code which was required to
interface with our algorithms. He, along with Rohit, wrote
the pose fusion code based on outlier rejection. He also
collected the dataset from the AirSim simulator to test the
generalizability of DeepTAM. He, with help from Parker,
wrote major portions of the final report.

Parker wrote the code used for pose fusion for the naive
method and the method which combines SIFT features with
depth image homogeneity for weighted averaging.

Solving the issues associated with the depth images and
how they interfaced with DeepTAM fell to Rohit. Pipeline
for extracting and pre-processing bag files, depth map re-
finement, and ground truth from checkerboard patterns were
all also essential tasks he was responsible for. He, along
with Mayank, streamlined the DeepTAM pipeline to use
multiple cameras.

Dataset collection was facilitated by Fadhil. He collected
the SunCG dataset. He also wrote the code to compute
ground truth from April tags in the datasets, however the
poses obtained from this method proved to be unreliable for
reasons stemming from the image sequences.

All of us were collectively responsible for collecting
dataset from the CVG sensor setup, and making the final
poster.

8. Code Contribution

The code for the Multi-Camera DeepTAM method can
be found on GitHub (https://github.com/surirohit/multi-
camera-deeptam). The original DeepTAM source code was
reorganized by Mayank, and wrapped into the class Single-
CamTracker to make it easier to interface and run tests with
different datasets with. The MultiCamTracker class was
created using instances of SingleCamTracker class for each
camera and propagating these instances through the Deep-
TAM algorithm. Pose fusion methods were implemented
which are fed the depth and color images from each camera
in the setup. Methods for fusing can be selected from within
the code.



Acknowledgements

We would like to thank CVG lab for assisting us with this
project. Specifically, Marcel Geppert and Viktor Larsson
were instrumental in helping us develop our methods and
providing feedback.

References
[1] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and N. B.

Ismail. Review of visual odometry: types, approaches, chal-
lenges, and applications. SpringerPlus, 5(1):1897–1897, Oct
2016.

[2] F. Camposeco, T. Sattler, and M. Pollefeys. Minimal solvers
for generalized pose and scale estimation from two rays and
one point. In European Conference on Computer Vision,
pages 202–218. Springer, 2016.

[3] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.
Mar. 2018.

[4] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular SLAM. In European Conference on
Computer Vision (ECCV), September 2014.

[5] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-
direct monocular visual odometry. In IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[6] M. Geppert, P. Liu, Z. Cui, M. Pollefeys, and T. Sattler. Ef-
ficient 2d-3d matching for multi-camera visual localization.
arXiv preprint arXiv:1809.06445, 2018.

[7] H. Hirschmuller. Stereo processing by semiglobal matching
and mutual information. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 30(2):328–341, Feb 2008.

[8] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Proc. Sixth IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR’07), Nara, Japan, November 2007.

[9] G. H. Lee, B. Li, M. Pollefeys, and F. Fraundorfer. Minimal
solutions for the multi-camera pose estimation problem. The
International Journal of Robotics Research, 34(7):837–848,
2015.

[10] P. Liu, M. Geppert, L. Heng, T. Sattler, A. Geiger, and
M. Pollefeys. Towards robust visual odometry with a multi-
camera system. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1154–1161.
IEEE, 2018.

[11] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[12] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-
source SLAM system for monocular, stereo and RGB-D
cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017.

[13] C. Netramai, H. Roth, and A. Sachenko. High accuracy vi-
sual odometry using multi-camera systems. In Proceedings
of the 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems, volume 1,
pages 263–268, Sep. 2011.

[14] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam:
Dense tracking and mapping in real-time. In 2011 Inter-

national Conference on Computer Vision, pages 2320–2327,
Nov 2011.

[15] R. Pless. Using many cameras as one. In 2003 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., volume 2, pages II–587.
IEEE, 2003.

[16] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and
V. Koltun. MINOS: Multimodal indoor simulator for navi-
gation in complex environments. arXiv:1712.03931, 2017.

[17] H. Seok and J. Lim. Rovo: Robust omnidirectional visual
odometry for wide-baseline wide-fov camera systems, 2019.

[18] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-
fidelity visual and physical simulation for autonomous vehi-
cles. In Field and Service Robotics, 2017.

[19] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017.

[20] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. Large
scale sfm with the distributed camera model. In 2016 Fourth
International Conference on 3D Vision (3DV), pages 230–
238. IEEE, 2016.

[21] R. Tron, R. Vidal, and A. Terzis. Distributed pose averaging
in camera networks via consensus on se (3). In 2008 Second
ACM/IEEE International Conference on Distributed Smart
Cameras, pages 1–10. IEEE, 2008.

[22] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,
A. Dosovitskiy, and T. Brox. Demon: Depth and motion
network for learning monocular stereo. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] H. Zhou, B. Ummenhofer, and T. Brox. Deeptam: Deep
tracking and mapping. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 822–838, 2018.


